信号与系统 chapter1 常见信号及其变换
什么是信號?
它的定義及其寬泛,但在我們電子通信工程中,我們可以把它看成一種波形;在數學上,我們可以把它看成一個函數。說到函數,函數又分為離散與連續,信號也是一樣,分為離散信號與連續信號。連續信號如一段時間內通過一個電阻電流的變化,離散信號如股市的指數變化。
離散與連續信號的表示
離散:x[n]x[n]x[n] nnn總是在整數上有定義
連續:x(t)x(t)x(t) t為實數
信號的時移變換、放縮變換
我們在這里變換的原則是,先翻折,再按照“左加右減”的原則移動信號的波形,如果代表時間的自變量ttt前面有系數,你要把系數消到1,下面舉個例子:
第二個式子就是由第一個式子得來,它題目會怎么考察你?
就是給你一個x(t)x(t)x(t)的圖像讓你來做變換。
ttt前面的系數,如果大于1,圖像就要像被壓縮一樣收縮一下;如果小于1,圖像就會像被人拉寬了一張在坐標軸上伸展。原因是你是在用原來的ttt去除現在ttt前面的那個系數。
如果t<0t<0t<0,就是關于y軸做了一個顛倒,這個初中數學里就學過。
我們的目光再回到剛才的那兩個式子,如果要用語言描述一下第一個式子變化到第二個式子的結果,那么就是:
這樣就得到了第二個圖像
信號的能量與功率
信號可分為能量有限信號和功率有限信號。如果信號的功率是有限的,則稱為功率有限信號,簡稱功率信號。功率信號的能量為無限大。它對通信系統的性能有很大影響,決定了無線系統中發射機的電壓和電磁場強度。
周期信號屬于功率信號
在離散信號中:
但要注意的是:
在這里插入圖片描述
因果與反因果信號
簡答的理解,一個有輸入才有輸出,后者你還沒輸入呢就有輸出了
階躍函數
階躍函數是一種特殊的連續時間函數,是一個從0跳變到1的過程,屬于奇異函數。在電路分析中,階躍函數是研究動態電路階躍響應的基礎。利用階躍函數可以進行信號處理、積分變換。在其他各個領域如自然生態、計算、工程等等均有不同程度的研究。
單位沖激函數
它是一個“面積”等于1的理想化了的窄脈沖。也就是說,這個脈沖的幅度等于它的寬度的倒數。當這個脈沖的寬度愈來愈小時,它的幅度就愈來愈大。當它的寬度按照數學上極限法則趨近于零時,那么它的幅度就趨近于無限大,這樣的一個脈沖就是“單位沖激函數”。在實際工程中,像“單位沖激函數”這樣的信號是不存在的,至多也就是近似而已。在理論上定義這樣一個函數,完全是為了分析研究方便的需要。
單位沖激函數與階躍函數之間的求導關系要牢記
階躍函數求導后可以得到沖激函數
沖激函數的取樣
沖激函數與其他函數相乘,由于其獨特的定義,相乘的結果就相當于在沖激函數的沖激時刻給f(x)f(x)f(x)取樣,但前提是你得包含沖激函數的取樣時刻在里面。
后邊的δ(t)\delta(t)δ(t)只在0時刻有值為1,所以這個積分一秒鐘得到答案,為f(0)f(0)f(0)
再看這個:
任何時刻與后面的沖擊函數相乘,你把前面那個函數的ttt用0代替了就可以了,答案是?22-\frac{\sqrt{2}}{2}?22??
下面一種情況:
再來看一道例題:
答案是0,因為它沒有包含沖擊所在的區間也就是t=1的時刻
總結
以上是生活随笔為你收集整理的信号与系统 chapter1 常见信号及其变换的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 房子备案价在哪里(房价在哪备案)
- 下一篇: 信号与系统 chapter2 冲激偶函数