错误录入 算法_如何使用验证错误率确定算法输出之间的关系
錯誤錄入 算法
Monument (www.monument.ai) enables you to quickly apply algorithms to data in a no-code interface. But, after you drag the algorithms onto data to generate predictions, you need to decide which algorithm or combination of algorithms is most reliable for your task.
使用Monument( www.monument.ai ),您可以在無代碼界面中快速將算法應(yīng)用于數(shù)據(jù)。 但是,將算法拖到數(shù)據(jù)上以生成預(yù)測后,需要確定哪種算法或算法組合最適合您的任務(wù)。
In the ocean temperature tutorial, we cleaned open remote sensing data and fed the data into Monument in order to forecast future ocean temperatures. In that case, we used visual inspection to evaluate the accuracy of different algorithms, which was possible because the historical data roughly formed a sine curve. Visual inspection is one tool in the data science toolbox, but there are other tools as well.
在海洋溫度教程中,我們清理了開放的遙感數(shù)據(jù)并將其輸入到Monument中,以預(yù)測未來的海洋溫度。 在那種情況下,我們使用視覺檢查來評估不同算法的準確性,這是有可能的,因為歷史數(shù)據(jù)大致形成了正弦曲線。 視覺檢查是數(shù)據(jù)科學(xué)工具箱中的一種工具,但是還有其他工具。
The Validation Error Rate is another useful tool in cases where you want to get more fine-grained or where visual inspection does not yield obvious insights. There are other error functions that can be used, but Validation Error Rate is the default error function in Monument.
在您希望獲得更細粒度或視覺檢查無法產(chǎn)生明顯見解的情況下,“驗證錯誤率”是另一個有用的工具。 可以使用其他錯誤函數(shù),但“驗證錯誤率”是Monument中的默認錯誤函數(shù)。
驗證錯誤率是多少?為什么重要? (What Is The Validation Error Rate And Why Is It Important?)
The Validation Error Rate measures the distance between “out of sample” values and estimates produced by the algorithm. You can find this metric in the INFO box in the lower-left corner of the MODEL workspace.
驗證錯誤率可衡量“樣本外”值與算法產(chǎn)生的估計值之間的距離。 您可以在MODEL工作區(qū)左下角的INFO框中找到該指標。
As a general rule of thumb, the “more negative” your Validation Error Rate is, the more accurate the model is. Negative infinity would be a perfect model. In the real world, as we will see with our ocean temperature data, sometimes the best you can do is a small, but nevertheless positive number.
通常,驗證錯誤率越“負”,則模型越準確。 負無窮大將是一個完美的模型。 在現(xiàn)實世界中,正如我們將通過海洋溫度數(shù)據(jù)所看到的那樣,有時您能做的最好的事情雖然很小,但仍然是正數(shù)。
Currently, Monument only displays one Validation Error Rate at a time. To view the Validation Error Rate for other algorithms that you have trained, click the drop-down arrow on the right side of the algorithm pill and select SHOW ERROR RATE.
當(dāng)前,紀念碑僅一次顯示一個驗證錯誤率。 要查看您已訓(xùn)練的其他算法的驗證錯誤率,請單擊算法丸右側(cè)的下拉箭頭,然后選擇顯示錯誤率。
To compare the performance of the models, I have pasted below a table of all the Validation Error Rates applied to the ocean temperatures data, sorted from lowest to highest.
為了比較模型的性能,我在下表中粘貼了應(yīng)用于海洋溫度數(shù)據(jù)的所有“驗證錯誤率”,從最低到最高排序。
As we discovered in the tutorial, with default parameters, AR and G-DyBM perform the best on the cleaned and transformed data.
正如我們在本教程中發(fā)現(xiàn)的那樣,使用默認參數(shù),AR和G-DyBM在清理和轉(zhuǎn)換后的數(shù)據(jù)上表現(xiàn)最佳。
如何提高算法性能 (How To Improve Algorithm Performance)
Typically, we can improve the Validation Error Rate — i.e. make it “more negative” — by adjusting the algorithms’ parameters. You can access an algorithm’s parameters by selecting PARAMETERS in the algorithm pill drop-down.
通常,我們可以通過調(diào)整算法參數(shù)來提高“驗證錯誤率”,即使其“更負”。 您可以通過在算法藥丸下拉列表中選擇“參數(shù)”來訪問算法的參數(shù)。
Choosing which parameters to edit to improve performance depends heavily on your business objectives and the nature of the data you’re looking at. We will cover common cases in future tutorials, but the best approach is to experiment yourself to develop an intuition around which parameters most improve results for different kinds of data.
選擇要編輯哪些參數(shù)以提高性能的方法很大程度上取決于您的業(yè)務(wù)目標和所查看數(shù)據(jù)的性質(zhì)。 我們將在以后的教程中介紹一些常見的案例,但是最好的方法是嘗試自己,以開發(fā)出一種直覺,即參數(shù)可以最有效地改善不同類型數(shù)據(jù)的結(jié)果。
Certain algorithms allow for automated parameter adjustment. In Monument, the LSTM and LightGBM algorithms also have “AutoML,” which is short for Automated Machine Learning. AutoML automatically adjusts an algorithm’s parameters to optimize performance. You can select AUTOML from the algorithm drop-down to access these capabilities.
某些算法允許自動調(diào)整參數(shù)。 在Monument中,LSTM和LightGBM算法還具有“ AutoML”,這是自動機器學(xué)習(xí)的縮寫。 AutoML自動調(diào)整算法參數(shù)以優(yōu)化性能。 您可以從算法下拉列表中選擇AUTOML以訪問這些功能。
For example, when we run AutoML on the HABSOS data, we can lower the Validation Error Rate by 0.04 from 3.273 to 3.233. Not a huge improvement on this particular data, but an improvement nonetheless. Often, the gains are much greater.
例如,當(dāng)我們在HABSOS數(shù)據(jù)上運行AutoML時,我們可以將驗證錯誤率從3.273降低0.04到3.233。 在此特定數(shù)據(jù)上不是很大的改進,但是還是有改進。 通常,收益會更大。
There are other reports within Monument that we can use to improve algorithm performance, including, dependent variables, forecast training convergence, and feature importance. We’ll explore these topics in future tutorials.
Monument內(nèi)還有其他報告可用于改善算法性能,包括因變量,預(yù)測訓(xùn)練收斂性和功能重要性。 我們將在以后的教程中探討這些主題。
翻譯自: https://medium.com/swlh/how-to-decide-between-algorithm-outputs-using-the-validation-error-rate-c288a358ca9b
錯誤錄入 算法
總結(jié)
以上是生活随笔為你收集整理的错误录入 算法_如何使用验证错误率确定算法输出之间的关系的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 梦到包饺子预示着什么
- 下一篇: 做梦梦到小孩子和狗是什么预兆