3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人文社科 > 生活经验 >内容正文

生活经验

梯度提升决策树(GBDT)与XGBoost、LightGBM

發(fā)布時(shí)間:2023/11/28 生活经验 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 梯度提升决策树(GBDT)与XGBoost、LightGBM 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

20211224



【機(jī)器學(xué)習(xí)算法總結(jié)】XGBoost_yyy430的博客-CSDN博客_xgboost

xgboost參數(shù)

默認(rèn):auto。XGBoost中使用的樹構(gòu)造算法。可選項(xiàng):auto,exact,approx,hist,gpu_exact,gpu_hist。分布式和外部存儲(chǔ)器版本僅支持tree_method = approx。auto:使用啟發(fā)式方法選擇最快的方法。(1)對(duì)于中小型數(shù)據(jù)集,將使用精確的貪婪(exact)。(2)對(duì)于非常大的數(shù)據(jù)集,將選擇近似算法(approx)。(3)因?yàn)榕f行為總是在單個(gè)機(jī)器中使用精確貪婪,所以當(dāng)選擇近似算法來通知該選擇時(shí),用戶將得到消息。
exact:精確貪心算法。
approx:使用分位數(shù)草圖和梯度直方圖的近似貪婪算法。
hist:快速直方圖優(yōu)化近似貪心算法。 它使用了一些性能改進(jìn),例如垃圾箱緩存。
gpu_exact:精確算法的GPU實(shí)現(xiàn)。
gpu_hist:hist算法的GPU實(shí)現(xiàn)。

文章不全? ?缺少公式和圖

一、提升樹

  1. 提升樹boostring tree是以決策樹為基本學(xué)習(xí)器的提升方法。它被認(rèn)為是統(tǒng)計(jì)學(xué)習(xí)中性能最好的方法之一。

  2. 對(duì)分類問題,提升樹中的決策樹是二叉決策樹;對(duì)回歸問題,提升樹中的決策樹是二叉回歸樹。

  3. 提升樹模型可以表示為決策樹為基本學(xué)習(xí)器的加法模型:??。

    其中 :

    • 表示第 個(gè)決策樹。
    • 為第 個(gè)決策樹的參數(shù)。
    • 為決策樹的數(shù)量。
  4. 提升樹算法采用前向分步算法。

    • 首先確定初始提升樹??。

    • 第??步模型為:?。其中??為待求的第??個(gè)決策樹。

    • 通過經(jīng)驗(yàn)風(fēng)險(xiǎn)極小化確定第??個(gè)決策樹的參數(shù)?:?。

      這里沒有引入正則化,而在xgboost?中會(huì)引入正則化。

  5. 不同問題的提升樹學(xué)習(xí)算法主要區(qū)別在于使用的損失函數(shù)不同(設(shè)預(yù)測值為?,真實(shí)值為?):

    • 回歸問題:通常使用平方誤差損失函數(shù): 。
    • 分類問題:通常使用指數(shù)損失函數(shù): 。


1.1 算法

  1. 給定訓(xùn)練數(shù)據(jù)集?,其中??為輸入空間,??為輸出空間。

    如果將輸入空間??劃分為??個(gè)互不相交的區(qū)域?,并且在每個(gè)區(qū)域上確定輸出的常量?, 則決策樹可以表示為:?

    其中:

    • 參數(shù) 表示決策樹的劃分區(qū)域和各區(qū)域上的輸出。
    • 是決策樹的復(fù)雜度,即葉結(jié)點(diǎn)個(gè)數(shù)。
  2. 回歸問題中,提升樹采用平方誤差損失函數(shù)。此時(shí):

    其中??為當(dāng)前模型擬合數(shù)據(jù)的殘差。

    所以對(duì)回歸問題的提升樹算法,第??個(gè)決策樹??只需要簡單擬合當(dāng)前模型的殘差。

  3. 不僅是回歸提升樹算法,其它的boosting?回歸算法也是擬合當(dāng)前模型的殘差。

  4. 回歸提升樹算法:

    • 輸入:訓(xùn)練數(shù)據(jù)集?

    • 輸出:提升樹?

    • 算法步驟:

      • 初始化?

      • 對(duì)于?

        • 計(jì)算殘差: 。構(gòu)建訓(xùn)練殘差 : 。
        • 通過學(xué)習(xí)一個(gè)回歸樹來擬合殘差 ,得到 。
        • 更新
      • 得到回歸問題提升樹:?。


1.2 GBT

  1. 提升樹中,當(dāng)損失函數(shù)是平方損失函數(shù)和指數(shù)損失函數(shù)時(shí),每一步優(yōu)化都很簡單。因?yàn)槠椒綋p失函數(shù)和指數(shù)損失函數(shù)的求導(dǎo)非常簡單。

    當(dāng)損失函數(shù)是一般函數(shù)時(shí),往往每一步優(yōu)化不是很容易。針對(duì)這個(gè)問題,Freidman提出了梯度提升算法。

  2. 梯度提升樹GBT?是利用最速下降法的近似方法。其關(guān)鍵是利用損失函數(shù)的負(fù)梯度在當(dāng)前模型的值作為殘差的近似值,從而擬合一個(gè)回歸樹。

    根據(jù):

    則有:

    要使得損失函數(shù)降低,一個(gè)可選的方案是:?。

    • 對(duì)于平方損失函數(shù),它就是通常意義上的殘差。? ? ? ?看原文更好? ?有些圖沒粘貼過來
    • 對(duì)于一般損失函數(shù),它就是殘差的近似 。
  3. 梯度提升樹用于分類模型時(shí),是梯度提升決策樹GBDT;用于回歸模型時(shí),是梯度提升回歸樹GBRT

  4. 梯度提升回歸樹算法GBRT

    • 輸入:

      • 訓(xùn)練數(shù)據(jù)集
      • 損失函數(shù)
    • 輸出:回歸樹?

    • 算法步驟:

      • 初始化:??。

        它是一顆只有根結(jié)點(diǎn)的樹,根結(jié)點(diǎn)的輸出值為:使得損失函數(shù)最小的值。

      • 對(duì)于?

        • 對(duì)于, 計(jì)算:

        • 對(duì)??擬合一棵回歸樹,得到第??棵樹的葉結(jié)點(diǎn)區(qū)域?

        • 對(duì)??計(jì)算每個(gè)區(qū)域??上的輸出值:

        • 更新?

      • 最終得到回歸樹:??。

  5. 梯度提升決策樹算法GBDTGBRT類似,主要區(qū)別是GBDT的損失函數(shù)與GBRT的損失函數(shù)不同。


1.3 正則化

  1. 在工程應(yīng)用中,通常利用下列公式來更新模型:?。

    其中??稱作學(xué)習(xí)率。

    學(xué)習(xí)率是正則化的一部分,它可以降低模型更新的速度(需要更多的迭代)。

    • 經(jīng)驗(yàn)表明:一個(gè)小的學(xué)習(xí)率 () 可以顯著提高模型的泛化能力(相比較于 ) 。
    • 如果學(xué)習(xí)率較大會(huì)導(dǎo)致預(yù)測性能出現(xiàn)較大波動(dòng)。
  2. Freidman?從bagging?策略受到啟發(fā),采用隨機(jī)梯度提升來修改了原始的梯度提升樹算法。

    • 每一輪迭代中,新的決策樹擬合的是原始訓(xùn)練集的一個(gè)子集(而并不是原始訓(xùn)練集)的殘差。

      這個(gè)子集是通過對(duì)原始訓(xùn)練集的無放回隨機(jī)采樣而來。

    • 子集的占比??是一個(gè)超參數(shù),并且在每輪迭代中保持不變。

      • 如果 ,則與原始的梯度提升樹算法相同。
      • 較小的 會(huì)引入隨機(jī)性,有助于改善過擬合,因此可以視作一定程度上的正則化。
      • 工程經(jīng)驗(yàn)表明, 會(huì)帶來一個(gè)較好的結(jié)果。
    • 這種方法除了改善過擬合之外,另一個(gè)好處是:未被采樣的另一部分子集可以用來計(jì)算包外估計(jì)誤差。

      因此可以避免額外給出一個(gè)獨(dú)立的驗(yàn)證集。

  3. 梯度提升樹會(huì)限制每棵樹的葉子結(jié)點(diǎn)包含的樣本數(shù)量至少包含??個(gè)樣本,其中??為超參數(shù)。在訓(xùn)練過程中,一旦劃分結(jié)點(diǎn)會(huì)導(dǎo)致子結(jié)點(diǎn)的樣本數(shù)少于??,則終止劃分。

    這也是一種正則化策略,它會(huì)改善葉結(jié)點(diǎn)的預(yù)測方差。


1.4 RF vs GBT

  1. 從模型框架的角度來看:

    • 梯度提升樹GBTboosting 模型。
    • 隨機(jī)森林RFbagging 模型。
  2. 從偏差分解的角度來看:

    • 梯度提升樹GBT 采用弱分類器(高偏差,低方差)。梯度提升樹綜合了這些弱分類器,在每一步的過程中降低了偏差,但是保持低方差。
    • 隨機(jī)森林RF 采用完全成長的子決策樹(低偏差,高方差)。隨機(jī)森林要求這些子樹之間盡可能無關(guān),從而綜合之后能降低方差,但是保持低偏差。
  3. 如果在梯度提升樹和隨機(jī)森林之間二選一,幾乎總是建議選擇梯度提升樹。

    • 隨機(jī)森林的優(yōu)點(diǎn):天然的支持并行計(jì)算,因?yàn)槊總€(gè)子樹都是獨(dú)立的計(jì)算。

    • 梯度提升樹的優(yōu)點(diǎn):

      • 梯度提升樹采用更少的子樹來獲得更好的精度。

        因?yàn)樵诿枯喌?#xff0c;梯度提升樹會(huì)完全接受現(xiàn)有樹(投票權(quán)為1)。而隨機(jī)森林中每棵樹都是同等重要的(無論它們表現(xiàn)的好壞),它們的投票權(quán)都是?,因此不是完全接受的。

      • 梯度提升樹也可以修改從而實(shí)現(xiàn)并行化。

      • 梯度提升樹有一個(gè)明確的數(shù)學(xué)模型。因此任何能寫出梯度的任務(wù),都可以應(yīng)用梯度提升樹(比如?ranking?任務(wù))。而隨機(jī)森林并沒有一個(gè)明確的數(shù)學(xué)模型。


二、xgboost

  1. xgboost?也是使用與提升樹相同的前向分步算法。其區(qū)別在于:xgboost?通過結(jié)構(gòu)風(fēng)險(xiǎn)極小化來確定下一個(gè)決策樹的參數(shù)?:

    其中:

    • 為第 個(gè)決策樹的正則化項(xiàng)。這是xgboostGBT的一個(gè)重要區(qū)別。
    • 為目標(biāo)函數(shù)。
  2. 定義:

    即:

    • 為 在 的一階導(dǎo)數(shù)。
    • 為 在 的二階導(dǎo)數(shù)。

    對(duì)目標(biāo)函數(shù)??執(zhí)行二階泰勒展開:

    提升樹模型只采用一階泰勒展開。這也是xgboost?和GBT的另一個(gè)重要區(qū)別。

  3. 對(duì)一個(gè)決策樹??,假設(shè)不考慮復(fù)雜的推導(dǎo)過程,僅考慮決策樹的效果:

    • 給定輸入 ,該決策樹將該輸入經(jīng)過不斷的劃分,最終劃分到某個(gè)葉結(jié)點(diǎn)上去。
    • 給定一個(gè)葉結(jié)點(diǎn),該葉結(jié)點(diǎn)有一個(gè)輸出值。

    因此將決策樹拆分成結(jié)構(gòu)部分?,和葉結(jié)點(diǎn)權(quán)重部分??,其中??為葉結(jié)點(diǎn)的數(shù)量。

    • 結(jié)構(gòu)部分 的輸出是葉結(jié)點(diǎn)編號(hào) 。它的作用是將輸入 映射到編號(hào)為 的葉結(jié)點(diǎn)。
    • 葉結(jié)點(diǎn)權(quán)重部分就是每個(gè)葉結(jié)點(diǎn)的值。它的作用是輸出編號(hào)為 的葉結(jié)點(diǎn)的值 。

    因此決策樹改寫為:??。


2.1 結(jié)構(gòu)分

  1. 定義一個(gè)決策樹的復(fù)雜度為:?。

    其中:?為葉結(jié)點(diǎn)的個(gè)數(shù);?為每個(gè)葉結(jié)點(diǎn)的輸出值;?為系數(shù),控制這兩個(gè)部分的比重。

    • 葉結(jié)點(diǎn)越多,則決策樹越復(fù)雜。
    • 每個(gè)葉結(jié)點(diǎn)輸出值的絕對(duì)值越大,則決策樹越復(fù)雜。

    該復(fù)雜度是一個(gè)經(jīng)驗(yàn)公式。事實(shí)上還有很多其他的定義復(fù)雜度的方式,只是這個(gè)公式效果還不錯(cuò)。

  2. 將樹的拆分、樹的復(fù)雜度代入??的二階泰勒展開,有:

    對(duì)于每個(gè)樣本?,它必然被劃分到樹??的某個(gè)葉結(jié)點(diǎn)。定義劃分到葉結(jié)點(diǎn)??的樣本的集合為:?。則有:

  3. 定義 :?。

    • 刻畫了隸屬于葉結(jié)點(diǎn) 的那些樣本的一階偏導(dǎo)數(shù)之和。
    • 刻畫了隸屬于葉結(jié)點(diǎn) 的那些樣本的二階偏導(dǎo)數(shù)之和。

    偏導(dǎo)數(shù)是損失函數(shù)??關(guān)于當(dāng)前模型的輸出??的偏導(dǎo)數(shù)。

    則上式化簡為:?。

    假設(shè)??與 與??無關(guān),對(duì)??求導(dǎo)等于0,則得到:?。

    忽略常數(shù)項(xiàng),于是定義目標(biāo)函數(shù)為:

  4. 在推導(dǎo)過程中假設(shè)??與 與??無關(guān),這其實(shí)假設(shè)已知樹的結(jié)構(gòu)。

    事實(shí)上??是與??相關(guān)的,甚至與樹的結(jié)構(gòu)相關(guān),因此定義??為結(jié)構(gòu)分。

    結(jié)構(gòu)分刻畫了:當(dāng)已知樹的結(jié)構(gòu)時(shí)目標(biāo)函數(shù)的最小值。


2.2 分解結(jié)點(diǎn)

  1. 現(xiàn)在的問題是:如何得到最佳的樹的結(jié)構(gòu),從而使得目標(biāo)函數(shù)全局最小。


2.2.1 貪心算法

  1. 第一種方法是對(duì)現(xiàn)有的葉結(jié)點(diǎn)加入一個(gè)分裂,然后考慮分裂之后目標(biāo)函數(shù)降低多少。

    • 如果目標(biāo)函數(shù)下降,則說明可以分裂。
    • 如果目標(biāo)函數(shù)不下降,則說明該葉結(jié)點(diǎn)不宜分裂。
  2. 對(duì)于一個(gè)葉結(jié)點(diǎn),假如給定其分裂點(diǎn),定義劃分到左子結(jié)點(diǎn)的樣本的集合為:?;定義劃分到右子結(jié)點(diǎn)的樣本的集合為:?。則有:

  3. 定義葉結(jié)點(diǎn)的分裂增益為:

    其中:

    • 表示:該葉結(jié)點(diǎn)的左子樹的結(jié)構(gòu)分。
    • 表示:該葉結(jié)點(diǎn)的右子樹的結(jié)構(gòu)分。
    • 表示:如果不分裂,則該葉結(jié)點(diǎn)本身的結(jié)構(gòu)分。
    • 表示:因?yàn)榉至褜?dǎo)致葉結(jié)點(diǎn)數(shù)量增大1,從而導(dǎo)致增益的下降。

    每次分裂只一個(gè)葉結(jié)點(diǎn),因此其它葉結(jié)點(diǎn)不會(huì)發(fā)生變化。因此:

    • 若 ,則該葉結(jié)點(diǎn)應(yīng)該分裂。
    • 若 ,則該葉結(jié)點(diǎn)不宜分裂。
  4. 現(xiàn)在的問題是:不知道分裂點(diǎn)。對(duì)于每個(gè)葉結(jié)點(diǎn),存在很多個(gè)分裂點(diǎn),且可能很多分裂點(diǎn)都能帶來增益。

    解決的辦法是:對(duì)于葉結(jié)點(diǎn)中的所有可能的分裂點(diǎn)進(jìn)行一次掃描。然后計(jì)算每個(gè)分裂點(diǎn)的增益,選取增益最大的分裂點(diǎn)作為本葉結(jié)點(diǎn)的最優(yōu)分裂點(diǎn)。

  5. 最優(yōu)分裂點(diǎn)貪心算法:

    • 輸入:

      • 數(shù)據(jù)集 ,其中樣本 。
      • 屬于當(dāng)前葉結(jié)點(diǎn)的樣本集的下標(biāo)集合 。
    • 輸出:當(dāng)前葉結(jié)點(diǎn)最佳分裂點(diǎn)。

    • 算法:

      • 初始化:?。

      • 遍歷各維度:

        • 初始化:?

        • 遍歷各拆分點(diǎn):沿著第??維 :

          • 如果第??維特征為連續(xù)值,則將當(dāng)前葉結(jié)點(diǎn)中的樣本從小到大排序。然后用??順序遍歷排序后的樣本下標(biāo):

          • 如果第??維特征為離散值??,設(shè)當(dāng)前葉結(jié)點(diǎn)中第??維取值??樣本的下標(biāo)集合為??,則遍歷??:

      • 選取最大的??對(duì)應(yīng)的維度和拆分點(diǎn)作為最優(yōu)拆分點(diǎn)。

  6. 分裂點(diǎn)貪心算法嘗試所有特征和所有分裂位置,從而求得最優(yōu)分裂點(diǎn)。

    當(dāng)樣本太大且特征為連續(xù)值時(shí),這種暴力做法的計(jì)算量太大。


2.2.2 近似算法

  1. 近似算法尋找最優(yōu)分裂點(diǎn)時(shí)不會(huì)枚舉所有的特征值,而是對(duì)特征值進(jìn)行聚合統(tǒng)計(jì),然后形成若干個(gè)桶。

    然后僅僅將桶邊界上的特征的值作為分裂點(diǎn)的候選,從而獲取計(jì)算性能的提升。

  2. 假設(shè)數(shù)據(jù)集??,樣本??。

    對(duì)第??個(gè)特征進(jìn)行分桶:

    • 如果第??個(gè)特征為連續(xù)特征,則執(zhí)行百分位分桶,得到分桶的區(qū)間為:?,其中??。

      分桶的數(shù)量、分桶的區(qū)間都是超參數(shù),需要仔細(xì)挑選。

    • 如果第??個(gè)特征為離散特征,則執(zhí)行按離散值分桶,得到的分桶為:?,其中??為第??個(gè)特征的所有可能的離散值。

      分桶的數(shù)量??就是所有樣本在第??個(gè)特征上的取值的數(shù)量。

  3. 最優(yōu)分裂點(diǎn)近似算法:

    • 輸入:

      • 數(shù)據(jù)集 ,其中樣本 。
      • 屬于當(dāng)前葉結(jié)點(diǎn)的樣本集的下標(biāo)集合 。
    • 輸出:當(dāng)前葉結(jié)點(diǎn)最佳分裂點(diǎn)。

    • 算法:

      • 對(duì)每個(gè)特征進(jìn)行分桶。 假設(shè)對(duì)第??個(gè)特征上的值進(jìn)行分桶為:?。

        如果第??個(gè)特征為連續(xù)特征,則要求滿足??。

      • 初始化:?。

      • 遍歷各維度:

        • 初始化:?

        • 遍歷各拆分點(diǎn),即遍歷??:

          • 如果是連續(xù)特征,則設(shè)葉結(jié)點(diǎn)的樣本中,第??個(gè)特征取值在區(qū)間??的樣本的下標(biāo)集合為?,則:

          • 如果是離散特征,則設(shè)葉結(jié)點(diǎn)的樣本中,第??個(gè)特征取值等于??的樣本的下標(biāo)集合為?,則:

        • 選取最大的??對(duì)應(yīng)的維度和拆分點(diǎn)作為最優(yōu)拆分點(diǎn)。

  4. 分桶有兩種模式:

    • 全局模式:在算法開始時(shí),對(duì)每個(gè)維度分桶一次,后續(xù)的分裂都依賴于該分桶并不再更新。

      • 優(yōu)點(diǎn)是:只需要計(jì)算一次,不需要重復(fù)計(jì)算。
      • 缺點(diǎn)是:在經(jīng)過多次分裂之后,葉結(jié)點(diǎn)的樣本有可能在很多全局桶中是空的。
    • 局部模式:除了在算法開始時(shí)進(jìn)行分桶,每次拆分之后再重新分桶。

      • 優(yōu)點(diǎn)是:每次分桶都能保證各桶中的樣本數(shù)量都是均勻的。
      • 缺點(diǎn)是:計(jì)算量較大。

    全局模式會(huì)構(gòu)造更多的候選拆分點(diǎn)。而局部模式會(huì)更適合構(gòu)建更深的樹。

  5. 分桶時(shí)的桶區(qū)間間隔大小是個(gè)重要的參數(shù)。

    區(qū)間間隔越小,則桶越多,則劃分的越精細(xì),候選的拆分點(diǎn)就越多。


2.3 加權(quán)分桶

  1. 假設(shè)候選樣本的第??維特征,及候選樣本的損失函數(shù)的二階偏導(dǎo)數(shù)為:

    定義排序函數(shù):

    它刻畫的是:第??維小于??的樣本的??之和,占總的??之和的比例。

  2. xgboost?的作者提出了一種帶權(quán)重的桶劃分算法。定義候選樣本的下標(biāo)集合為??,拆分點(diǎn)??定義為:

    其中??表示樣本??的第??個(gè)特征。即:

    • 最小的拆分點(diǎn)是所有樣本第??維的最小值。

    • 最大的拆分點(diǎn)是所有樣本第??維的最大值。

    • 中間的拆分點(diǎn):選取拆分點(diǎn),使得相鄰拆分點(diǎn)的排序函數(shù)值小于??(分桶的桶寬)。

      • 其意義為:第 維大于等于 ,小于 的樣本的 之和,占總的 之和的比例小于 。
      • 這種拆分點(diǎn)使得每個(gè)桶內(nèi)的以 為權(quán)重的樣本數(shù)量比較均勻,而不是樣本個(gè)數(shù)比較均勻。
  3. 上述拆分的一個(gè)理由是:根據(jù)損失函數(shù)的二階泰勒展開有:

    對(duì)于第??個(gè)決策樹,它等價(jià)于樣本??的真實(shí)標(biāo)記為?、權(quán)重為?、損失函數(shù)為平方損失函數(shù)。因此分桶時(shí)每個(gè)桶的權(quán)重為??。


2.4 缺失值

  1. 真實(shí)場景中,有很多可能導(dǎo)致產(chǎn)生稀疏。如:數(shù)據(jù)缺失、某個(gè)特征上出現(xiàn)很多 0 項(xiàng)、人工進(jìn)行?one-hot?編碼導(dǎo)致的大量的 0。

    • 理論上,數(shù)據(jù)缺失和數(shù)值0的含義是不同的,數(shù)值 0 是有效的。

    • 實(shí)際上,數(shù)值0的處理方式類似缺失值的處理方式,都視為稀疏特征。

      xgboost?中,數(shù)值0的處理方式和缺失值的處理方式是統(tǒng)一的。這只是一個(gè)計(jì)算上的優(yōu)化,用于加速對(duì)稀疏特征的處理速度。

    • 對(duì)于稀疏特征,只需要對(duì)有效值進(jìn)行處理,無效值則采用默認(rèn)的分裂方向。

      注意:每個(gè)結(jié)點(diǎn)的默認(rèn)分裂方向可能不同。

  2. xgboost?算法的實(shí)現(xiàn)中,允許對(duì)數(shù)值0進(jìn)行不同的處理。可以將數(shù)值0視作缺失值,也可以將其視作有效值。

    如果數(shù)值0是有真實(shí)意義的,則建議將其視作有效值。

  3. 缺失值處理算法:

    • 輸入:

      • 數(shù)據(jù)集 ,其中樣本 。
      • 屬于當(dāng)前葉結(jié)點(diǎn)的樣本的下標(biāo)集合 。
      • 屬于當(dāng)前葉結(jié)點(diǎn),且第 維特征有效的樣本的下標(biāo)集合 。
    • 輸出:當(dāng)前葉結(jié)點(diǎn)最佳分裂點(diǎn)。

    • 算法:

      • 初始化:?。

      • 遍歷各維度:

        • 先從左邊開始遍歷:

          • 初始化:?

          • 遍歷各拆分點(diǎn):沿著第??維,將當(dāng)前有效的葉結(jié)點(diǎn)的樣本從小到大排序。

            這相當(dāng)于所有無效特征值的樣本放在最右側(cè),因此可以保證無效的特征值都在右子樹。

            然后用??順序遍歷排序后的樣本下標(biāo):

        • 再從右邊開始遍歷:

          • 初始化:?

          • 遍歷各拆分點(diǎn):沿著??維,將當(dāng)前葉結(jié)點(diǎn)的樣本從大到小排序。

            這相當(dāng)于所有無效特征值的樣本放在最左側(cè),因此可以保證無效的特征值都在左子樹。

            然后用??逆序遍歷排序后的樣本下標(biāo):

      • 選取最大的??對(duì)應(yīng)的維度和拆分點(diǎn)作為最優(yōu)拆分點(diǎn)。

  4. 缺失值處理算法中,通過兩輪遍歷可以確保稀疏值位于左子樹和右子樹的情形。


2.5 其他優(yōu)化


2.5.1 正則化

  1. xgboost?在學(xué)習(xí)過程中使用了如下的正則化策略來緩解過擬合:

    • 通過學(xué)習(xí)率 來更新模型: 。
    • 類似于隨機(jī)森林,采取隨機(jī)屬性選擇。


2.5.2 計(jì)算速度提升

  1. xgboost?在以下方面提出改進(jìn)來提升計(jì)算速度:

    • 預(yù)排序pre-sorted
    • cache-aware 預(yù)取。
    • Out-of-Core 大數(shù)據(jù)集。


2.5.2.1 預(yù)排序

  1. xgboost?提出column block?數(shù)據(jù)結(jié)構(gòu)來降低排序時(shí)間。

    • 每一個(gè)block 代表一個(gè)屬性,樣本在該block 中按照它在該屬性的值排好序。
    • 這些block 只需要在程序開始的時(shí)候計(jì)算一次,后續(xù)排序只需要線性掃描這些block 即可。
    • 由于屬性之間是獨(dú)立的,因此在每個(gè)維度尋找劃分點(diǎn)可以并行計(jì)算。
  2. block?可以僅存放樣本的索引,而不是樣本本身,這樣節(jié)省了大量的存儲(chǔ)空間。

    如:block_1?代表所有樣本在feature_1?上的從小到大排序:sample_no1,sample_no2,....?。

    其中樣本編號(hào)出現(xiàn)的位置代表了該樣本的排序。


2.5.2.2 預(yù)取

  1. 由于在column block?中,樣本的順序會(huì)被打亂,這會(huì)使得從導(dǎo)數(shù)數(shù)組中獲取??時(shí)的緩存命中率較低。

    因此xgboost?提出了cache-aware?預(yù)取算法,用于提升緩存命中率。

  2. xgboost?會(huì)以minibatch?的方式累加數(shù)據(jù),然后在后臺(tái)開啟一個(gè)線程來加載需要用到的導(dǎo)數(shù)??。

    這里有個(gè)折中:minibatch?太大,則會(huì)引起cache miss?;太小,則并行程度較低。


2.5.2.3 Out-of-Core

  1. xgboost?利用硬盤來處理超過內(nèi)存容量的大數(shù)據(jù)集。其中使用了下列技術(shù):

    • 使用block 壓縮技術(shù)來緩解內(nèi)存和硬盤的數(shù)據(jù)交換IO : 數(shù)據(jù)按列壓縮,并且在硬盤到內(nèi)存的傳輸過程中被自動(dòng)解壓縮。
    • 數(shù)據(jù)隨機(jī)分片到多個(gè)硬盤,每個(gè)硬盤對(duì)應(yīng)一個(gè)預(yù)取線程,從而加大"內(nèi)存-硬盤"交換數(shù)據(jù)的吞吐量。


三、LightGBM

  1. GBT?的缺點(diǎn):在構(gòu)建子決策樹時(shí)為了獲取分裂點(diǎn),需要在所有特征上掃描所有的樣本,從而獲得最大的信息增益。

    • 當(dāng)樣本的數(shù)量很大,或者樣本的特征很多時(shí),效率非常低。
    • 同時(shí)GBT 也無法使用類似mini batch 方式進(jìn)行訓(xùn)練。
  2. xgboost?缺點(diǎn):

    • 每輪迭代都需要遍歷整個(gè)數(shù)據(jù)集多次。

      • 如果把整個(gè)訓(xùn)練集裝載進(jìn)內(nèi)存,則限制了訓(xùn)練數(shù)據(jù)的大小。
      • 如果不把整個(gè)訓(xùn)練集裝載進(jìn)內(nèi)存,則反復(fù)讀寫訓(xùn)練數(shù)據(jù)會(huì)消耗非常大的IO 時(shí)間。
    • 空間消耗大。預(yù)排序(pre-sorted)需要保存數(shù)據(jù)的feature?值,還需要保存feature?排序的結(jié)果(如排序后的索引,為了后續(xù)的快速計(jì)算分割點(diǎn))。因此需要消耗訓(xùn)練數(shù)據(jù)兩倍的內(nèi)存。

    • 時(shí)間消耗大。為了獲取分裂點(diǎn),需要在所有特征上掃描所有的樣本,從而獲得最大的信息增益,時(shí)間消耗大。

    • 對(duì)cache?優(yōu)化不友好,造成cache miss?。

      • 預(yù)排序后,feature 對(duì)于梯度的訪問是一種隨機(jī)訪問,并且不同feature 訪問的順序不同,無法對(duì)cache 進(jìn)行優(yōu)化。
      • 在每一層的樹生長時(shí),需要隨機(jī)訪問一個(gè)行索引到葉子索引的數(shù)組,并且不同feature 訪問的順序也不同。
  3. LightGBM?的優(yōu)點(diǎn):

    • 更快的訓(xùn)練效率:在達(dá)到同樣的準(zhǔn)確率的情況下,可以達(dá)到比GBT 約20倍的訓(xùn)練速度。
    • 低內(nèi)存使用。
    • 更高的準(zhǔn)確率。
    • 支持并行化學(xué)習(xí)。
    • 可處理大規(guī)模數(shù)據(jù)。


3.1 原理

  1. LightGBM?的思想:若減少訓(xùn)練樣本的數(shù)量,或者減少樣本的訓(xùn)練特征數(shù)量,則可以大幅度提高訓(xùn)練速度。

  2. LightGBM?提出了兩個(gè)策略:

    • Gradient-based One-Side Sampling(GOSS): 基于梯度的采樣。該方法用于減少訓(xùn)練樣本的數(shù)量。
    • Exclusive Feature Bundling(EFB): 基于互斥特征的特征捆綁。該方法用于減少樣本的特征。


3.1.1 GOSS


3.1.1.1 算法

  1. 減少樣本的數(shù)量的難點(diǎn)在于:不知道哪些樣本應(yīng)該被保留,哪些樣本被丟棄。

    • 傳統(tǒng)方法:采用隨機(jī)丟棄的策略。
    • GOSS 方法:保留梯度較大的樣本,梯度較小的樣本則隨機(jī)丟棄。
  2. AdaBoost?中每個(gè)樣本都有一個(gè)權(quán)重,該權(quán)重指示了樣本在接下來的訓(xùn)練過程中的重要性。

    GBDT?中并沒有這樣的權(quán)重。如果能知道每個(gè)樣本的重要性(即:權(quán)重),那么可以保留比較重要的樣本,丟棄不那么重要的樣本。

    由于GBDT?中,負(fù)的梯度作為當(dāng)前的殘差,接下來的訓(xùn)練就是擬合這個(gè)殘差。因此GOSS?采用樣本的梯度作為樣本的權(quán)重:

    • 如果權(quán)重較小,則說明樣本的梯度較小,說明該樣本已經(jīng)得到了很好的訓(xùn)練。因此對(duì)于權(quán)重較小的樣本,則可以隨機(jī)丟棄。
    • 如果權(quán)重較大,則說明樣本的梯度較大,說明該樣本未能充分訓(xùn)練。因此對(duì)于權(quán)重較大的樣本,則需要保留。
  3. GOSS?丟棄了部分樣本,因此它改變了訓(xùn)練樣本的分布。這會(huì)影響到模型的預(yù)測準(zhǔn)確性。

    為了解決這個(gè)問題,GOSS?對(duì)小梯度的樣本進(jìn)行了修正:對(duì)每個(gè)保留下來的、小梯度的樣本,其梯度乘以系數(shù)??(即放大一個(gè)倍數(shù))。

    其中(假設(shè)樣本總數(shù)為??):

    • ?是一個(gè)0.0~1.0?之間的數(shù),表示大梯度采樣比。

      其意義為:保留梯度的絕對(duì)值在?top??的樣本作為重要的樣本。

    • ?是一個(gè)0.0~1.0?之間的數(shù),表示小梯度采樣比。

      其意義為:從不重要的樣本中隨機(jī)保留??的樣本。

    • ?是一個(gè)0.0~1.0?之間的數(shù),表示不重要的樣本的比例。

    • ?刻畫了:從不重要的樣本中,隨機(jī)保留的樣本的比例的倒數(shù)。

  4. GOSS?算法:

    • 輸入:

      • 訓(xùn)練集 ,其樣本數(shù)量為
      • 大梯度采樣比
      • 小梯度采樣比
      • 當(dāng)前的模型
    • 輸出:下一個(gè)子樹?

    • 算法:

      • 計(jì)算:

        • 修正因子
        • 重要的樣本數(shù)為
        • 隨機(jī)丟棄的樣本數(shù)為
        • 每個(gè)樣本的損失函數(shù)的梯度
      • 根據(jù)梯度的絕對(duì)值大小,將樣本按照從大到小排列。

        • 取其中取 的樣本作為重要性樣本。
        • 在 之外的樣本中,隨機(jī)選取 的樣本作為保留樣本,剩下的樣本被丟棄。
      • 構(gòu)建新的訓(xùn)練集:重要性樣本+隨機(jī)保留的樣本,其中:

        • 個(gè)重要性樣本,每個(gè)樣本的權(quán)重都為 1。
        • 個(gè)隨機(jī)保留的樣本,每個(gè)樣本的權(quán)重都為 。
      • 根據(jù)新的訓(xùn)練集及其權(quán)重,訓(xùn)練決策樹模型??來擬合殘差(即:負(fù)梯度?)。返回訓(xùn)練好的??。

  5. 由于需要在所有的樣本上計(jì)算梯度,因此?丟棄樣本的比例 ~ 加速比?并不是線性的關(guān)系。


3.1.1.2 理論

  1. GBDT?生成新的子決策樹??時(shí),對(duì)于當(dāng)前結(jié)點(diǎn)??,考慮是否對(duì)它進(jìn)行分裂。

    假設(shè)結(jié)點(diǎn)??包含的樣本集合為?, 樣本維數(shù)為??。對(duì)于第??維,假設(shè)其拆分點(diǎn)為?。

    • 對(duì)于分類問題,其拆分增益為信息增益。它刻畫的是劃分之后混亂程度的降低,也就是純凈程度的提升:

      其中:

      • 表示樣本屬于結(jié)點(diǎn) 的概率, 為結(jié)點(diǎn) 上的樣本標(biāo)記的條件熵。
      • 表示左子結(jié)點(diǎn)的樣本集合; 表示右子結(jié)點(diǎn)的樣本集合。
      • 表示樣本屬于結(jié)點(diǎn) 的左子結(jié)點(diǎn)概率, 為左子結(jié)點(diǎn)的樣本標(biāo)記的條件熵。
      • 表示樣本屬于結(jié)點(diǎn) 的右子結(jié)點(diǎn)概率, 為右子結(jié)點(diǎn)的樣本標(biāo)記的條件熵。

      對(duì)于結(jié)點(diǎn)??的任意拆分點(diǎn),由于??都相同,所以:

    • 對(duì)于回歸問題,其拆分增益為方差增益(variance gain:VG)。它刻畫的是劃分之后方差的下降;也就是純凈程度的提升:

      其中:

      • 表示屬于結(jié)點(diǎn) 的樣本的標(biāo)記的方差。
      • 表示左子結(jié)點(diǎn)的樣本集合; 表示右子結(jié)點(diǎn)的樣本集合。
      • 表示屬于結(jié)點(diǎn) 的左子結(jié)點(diǎn)的樣本的標(biāo)記的方差。
      • 表示屬于結(jié)點(diǎn) 的右子結(jié)點(diǎn)的樣本的標(biāo)記的方差。

      對(duì)于結(jié)點(diǎn)??的任意拆分點(diǎn),由于??都相同,所以:

  2. 對(duì)于樣本??,設(shè)其標(biāo)記為??(它是殘差,也是負(fù)梯度)。

    對(duì)于結(jié)點(diǎn)??中的樣本,設(shè)其樣本數(shù)量為?,樣本的標(biāo)記均值為??,其方差為:

    設(shè)總樣本數(shù)量為?, 則??,則有:

  3. 現(xiàn)在考慮回歸問題。

    對(duì)于拆分維度??和拆分點(diǎn)?, 令左子結(jié)點(diǎn)的樣本下標(biāo)為?,樣本數(shù)量為??右子結(jié)點(diǎn)的樣本下標(biāo)為?, 樣本數(shù)量為??。則方差增益:

    考慮到?,因此有:?。因此則方差增益:

    考慮到總樣本大小?是個(gè)恒定值,因此可以去掉??。考慮到??并不隨著結(jié)點(diǎn)??的不同劃分而變化因此定義:對(duì)于拆分維度??和拆分點(diǎn)?,方差增益為:

  4. 考慮在?GOSS?中,在劃分結(jié)點(diǎn)??的過程中,可能會(huì)隨機(jī)丟棄一部分樣本,從而??的樣本總數(shù)下降。因此重新定義方差增益:

  5. GOSS?中:

    • 首先根據(jù)樣本的梯度的絕對(duì)值大小降序排列。
    • 然后選取其中的 top a 的樣本作為重要樣本,設(shè)其集合為 。則剩下的樣本集合 保留了 1-a 比例的樣本。
    • 在剩下的樣本集合 中,隨機(jī)選取總樣本的 比例的樣本保留,設(shè)其集合為 。
    • 最后將樣本 劃分到子結(jié)點(diǎn)中。

    重新定義方差增益為:

    其中:

    • ?表示所有保留的樣本的數(shù)量。??分別表示左子結(jié)點(diǎn)、右子結(jié)點(diǎn)保留的樣本的數(shù)量。

    • ?分別表示左子結(jié)點(diǎn)、右子結(jié)點(diǎn)的被保留的重要樣本的集合。

      ?分別表示左子結(jié)點(diǎn)、右子結(jié)點(diǎn)的被保留的不重要樣本的集合。

    • ?用于補(bǔ)償由于對(duì)??的采樣帶來的梯度之和的偏離。

    由于??的大小可能遠(yuǎn)遠(yuǎn)小于?,因此估計(jì)??需要的計(jì)算量可能遠(yuǎn)遠(yuǎn)小于估計(jì)?。

  6. 定義近似誤差為:, 定義標(biāo)準(zhǔn)的梯度均值:

    則可以證明:至少以概率??滿足:

    其中:

    • ,刻畫的是剩余樣本集合 中最大梯度的加權(quán)值。
    • , 刻畫的是未采取GOSS 時(shí),劃分的左子結(jié)點(diǎn)的梯度均值、右子結(jié)點(diǎn)的梯度均值中,較大的那個(gè)。

    結(jié)論:

    • 當(dāng)劃分比較均衡(即:?) 時(shí),近似誤差由不等式的第二項(xiàng)決定。

      此時(shí),隨著樣本數(shù)量的增長,使用GOSS?和原始的算法的誤差逼近于 0 。

    • 當(dāng)??時(shí),GOSS?退化為隨機(jī)采樣。

  7. GOSS?的采樣增加了基學(xué)習(xí)器的多樣性,有助于提升集成模型的泛化能力。


3.1.2 EFB

  1. 減少樣本特征的傳統(tǒng)方法是:使用特征篩選。

    該方式通常是通過?PCA?來實(shí)現(xiàn)的,其中使用了一個(gè)關(guān)鍵的假設(shè):不同的特征可能包含了重復(fù)的信息。這個(gè)假設(shè)很有可能在實(shí)踐中無法滿足。

  2. LightBGM?的思路是:很多特征都是互斥的,即:這些特征不會(huì)同時(shí)取得非零的值。如果能將這些互斥的特征捆綁打包成一個(gè)特征,那么可以將特征數(shù)量大幅度降低。

    現(xiàn)在有兩個(gè)問題:

    • 如何找到互斥的特征。
    • 如何將互斥的特征捆綁成一個(gè)特征。


3.1.2.1 互斥特征發(fā)現(xiàn)

  1. 定義打包特征集為這樣的特征的集合:集合中的特征兩兩互斥。

    給定數(shù)據(jù)集??,其中樣本??。

    如果對(duì)每個(gè)??,都不會(huì)出現(xiàn)??,則特征??和特征??互斥。

  2. 可以證明:將每個(gè)特征劃分到每個(gè)打包特征集中使得打包特征集?的數(shù)量最小,這個(gè)問題是NP?難的。

    為了解決這個(gè)問題,LightGBM?采用了一個(gè)貪心算法來求解一個(gè)近似的最優(yōu)解。

  3. 將每個(gè)特征視為圖中的一個(gè)頂點(diǎn)。

    遍歷每個(gè)樣本?, 如果特征??之間不互斥(即??),則:

    • 如果頂點(diǎn) 之間不存在邊,則在頂點(diǎn) 之間連接一條邊,權(quán)重為 1 。
    • 如果頂點(diǎn) 之間存在邊,則頂點(diǎn) 之間的邊的權(quán)重加 1 。

    最終,如果一組頂點(diǎn)之間都不存在邊,則它們是相互互斥的,則可以放入到同一個(gè)打包特征集?中。

  4. 事實(shí)上有些特征之間并不是完全互斥的,而是存在非常少量的沖突。即:存在少量的樣本,在這些樣本上,這些特征之間同時(shí)取得非零的值。

    如果允許這種少量的沖突,則可以將更多的特征放入打包特征集中,這樣就可以減少更多的特征。

  5. 理論上可以證明:如果隨機(jī)污染小部分的樣本的特征的值,則對(duì)于訓(xùn)練accuracy?的影響是:最多影響??。其中??為污染樣本的比例,??為樣本數(shù)量 。

  6. 互斥特征發(fā)現(xiàn)算法:

    • 輸入:

      • 數(shù)據(jù)集 ,其中樣本 。
      • 沖突閾值 。
    • 輸出:打包特征集?的集合?

    • 算法:

      • 構(gòu)建圖?:

        • 每個(gè)特征作為一個(gè)頂點(diǎn)。

        • 遍歷每個(gè)樣本??:

          • 遍歷所有的特征對(duì)??,如果特征??之間不互斥 (即?)則:

            • 如果頂點(diǎn) 之間不存在邊,則在頂點(diǎn) 之間連接一條邊,權(quán)重為 1 。
            • 如果頂點(diǎn) 之間存在邊,則頂點(diǎn) 之間的邊的權(quán)重加 1 。
      • 對(duì)每個(gè)頂點(diǎn),根據(jù)?degree?(與頂點(diǎn)相連的邊的數(shù)量)來降序排列。

      • 初始化:

      • 根據(jù)頂點(diǎn)的排序遍歷頂點(diǎn):

        設(shè)當(dāng)前頂點(diǎn)為??。

        • 遍歷?打包特征集??,計(jì)算頂點(diǎn)??與?打包特征集??的沖突值??。如果?, 則說明頂點(diǎn)??與?打包特征集??不沖突。此時(shí)將頂點(diǎn)??添加到?打包特征集??中,退出循環(huán)并考慮下一個(gè)頂點(diǎn)。

          頂點(diǎn)??與?bundle?特征集??的沖突值有兩種計(jì)算方法:

          • 計(jì)算最大沖突值:即最大的邊的權(quán)重:
          • 計(jì)算所有的沖突值:即所有的邊的權(quán)重:
        • 如果頂點(diǎn)??未加入到任何一個(gè)?打包特征集?中 ,則:創(chuàng)建一個(gè)新的?打包特征集?加入到??中,并將頂點(diǎn)??添加到這個(gè)新的?打包特征集?中。

      • 返回?

  7. 互斥特征發(fā)現(xiàn)算法的算法復(fù)雜度為:?,其中??為樣本總數(shù),?為樣本維數(shù)。

    • 復(fù)雜度主要集中在構(gòu)建圖 。
    • 該算法只需要在訓(xùn)練之前執(zhí)行一次。
    • 當(dāng)特征數(shù)量較小時(shí),該算法的復(fù)雜度還可以接受。當(dāng)特征數(shù)量非常龐大時(shí),該算法的復(fù)雜度太高。
    • 優(yōu)化的互斥特征發(fā)現(xiàn)算法不再構(gòu)建圖 ,而是僅僅計(jì)算每個(gè)特征的非零值。
  8. 優(yōu)化的互斥特征發(fā)現(xiàn)算法:

    • 輸入:

      • 數(shù)據(jù)集 ,其中樣本 。
      • 沖突閾值 。
    • 輸出:打包特征集?的集合?

    • 算法:

      • 初始化:所有特征的非零值數(shù)量組成的數(shù)組?

      • 計(jì)算每個(gè)特征的非零值 (復(fù)雜度?) :遍歷所有的特征??、遍歷所有所有的樣本??,獲取特征??的非零值??。

      • 根據(jù)??對(duì)頂點(diǎn)降序排列。

      • 初始化:

      • 根據(jù)頂點(diǎn)的排序遍歷頂點(diǎn):

        設(shè)當(dāng)前頂點(diǎn)為??。

        • 遍歷?打包特征集?,計(jì)算頂點(diǎn)??與?打包特征集??的沖突值??。如果?, 則說明頂點(diǎn)??與?打包特征集??不沖突。此時(shí)將頂點(diǎn)??添加到?打包特征集??中,退出循環(huán)并考慮下一個(gè)頂點(diǎn)。

          頂點(diǎn)??與?bundle?特征集??的沖突值有兩種計(jì)算方法:

          • 計(jì)算最大沖突值:即最大的非零值:
          • 計(jì)算所有的沖突值:即所有的非零值:

          這里簡單的將兩個(gè)特征的非零值之和認(rèn)為是它們的沖突值。它是實(shí)際的沖突值的上界。

        • 如果頂點(diǎn)??未加入到任何一個(gè)?打包特征集?中 ,則:創(chuàng)建一個(gè)新的?打包特征集?加入到??中,并將頂點(diǎn)??添加到這個(gè)新的?打包特征集?中。

      • 返回?


3.1.2.2 互斥特征打包

  1. 互斥特征打包的思想:可以從打包的特征中分離出原始的特征。

    假設(shè)特征?a?的取值范圍為?[0,10), 特征?b?的取值范圍為?[0,20)?。如果a,b?是互斥特征,那么打包的時(shí)候:對(duì)于特征?b的值,給它一個(gè)偏移量,比如 20。

    最終打包特征的取值范圍為:[0,40)

    • 如果打包特征的取值在 [0,10), 說明該值來自于特征 a
    • 如果打包特征的取值在[20,40),說明該值來自于特征 b
  2. 基于histogram?的算法需要考慮分桶,但是原理也是類似:將?[0,x]?之間的桶分給特征?a, 將?[x+offset,y]?之間的桶分給特征?b。 其中?offset > 0?。

  3. 互斥特征打包算法:

    • 輸入:

      • 數(shù)據(jù)集 ,其中樣本 。
      • 待打包的特征集合 。
    • 輸出:打包之后的分桶

    • 算法:

      • 令??記錄總的分桶數(shù)量,??記錄不同的特征的邊界。初始化:?。

      • 計(jì)算特征邊界:遍歷所有的特征?:

        • 獲取特征 的分桶數(shù)量 ,增加到 :
        • 獲取特征 的分桶邊界:
      • 創(chuàng)建新特征,它有??個(gè)桶。

      • 計(jì)算分桶點(diǎn):遍歷每個(gè)樣本??:

        • 計(jì)算每個(gè)特征??:

          • 如果 ,則:如果 在特征 的第 個(gè)分桶中, 那么在打包后的特征中,它位于桶 中。
          • 如果 ,則不考慮。
  4. 互斥特征打包算法的算法復(fù)雜度為?,其中??為樣本總數(shù),?為樣本維數(shù)。

  5. 也可以首先掃描所有的樣本,然后建立一張掃描表,該表中存放所有樣本所有特征的非零值。

    這樣互斥特征打包算法在每個(gè)特征上僅僅需要掃描非零的樣本即可。這樣每個(gè)特征的掃描時(shí)間從??降低為?, 其中??為該特征上非零的樣本數(shù)。

    該方法的缺陷是:消耗更多的內(nèi)存,因?yàn)樾枰谡麄€(gè)訓(xùn)練期間保留這樣的一張表。


3.2 優(yōu)化

  1. LightGBM?優(yōu)化思路:

    • 單個(gè)機(jī)器在不犧牲速度的情況下,盡可能多地用上更多的數(shù)據(jù)。
    • 多機(jī)并行時(shí)通信的代價(jià)盡可能地低,并且在計(jì)算上可以做到線性加速。
  2. LightGBM?的優(yōu)化:

    • 基于histogram 的決策樹算法。
    • 帶深度限制的leaf-wise 的葉子生長策略。
    • 直方圖做差加速。
    • 直接支持類別(categorical) 特征。
    • 并行優(yōu)化。


3.2.1 histogram 算法

  1. 基本思想:先把連續(xù)的浮點(diǎn)特征值離散化成??個(gè)整數(shù),同時(shí)構(gòu)造一個(gè)寬度為??的直方圖。

    在遍歷數(shù)據(jù)時(shí):

    • 根據(jù)離散化后的值作為索引在直方圖中累積統(tǒng)計(jì)量。
    • 當(dāng)遍歷一次數(shù)據(jù)后,直方圖累積了需要的統(tǒng)計(jì)量。
    • 然后根據(jù)直方圖的離散值,遍歷尋找最優(yōu)的分割點(diǎn)。
  2. 優(yōu)點(diǎn):節(jié)省空間。假設(shè)有??個(gè)樣本,每個(gè)樣本有??個(gè)特征,每個(gè)特征的值都是 32 位浮點(diǎn)數(shù)。

    • 對(duì)于每一列特征,都需要一個(gè)額外的排好序的索引(32位的存儲(chǔ)空間)。則pre-sorted 算法需要消耗 字節(jié)內(nèi)存。
    • 如果基于 histogram 算法,僅需要存儲(chǔ)feature bin value(離散化后的數(shù)值),不需要原始的feature value,也不用排序。而bin valueunit8_t 即可,因此histogram 算法消耗 字節(jié)內(nèi)存,是預(yù)排序算法的 。
  3. 缺點(diǎn):不能找到很精確的分割點(diǎn),訓(xùn)練誤差沒有pre-sorted?好。但從實(shí)驗(yàn)結(jié)果來看,?histogram?算法在測試集的誤差和?pre-sorted?算法差異并不是很大,甚至有時(shí)候效果更好。

    實(shí)際上可能決策樹對(duì)于分割點(diǎn)的精確程度并不太敏感,而且較“粗”的分割點(diǎn)也自帶正則化的效果。

  4. 采用histogram?算法之后,尋找拆分點(diǎn)的算法復(fù)雜度為:

    • 構(gòu)建histogram: 。
    • 尋找拆分點(diǎn): ,其中 為分桶的數(shù)量。
  5. 與其他算法相比:

    • scikit-learn GBDTgbm in R 使用的是基于pre-sorted 的算法。
    • pGBRT 使用的是基于histogram 的算法。
    • xgboost 既提供了基于pre-sorted 的算法,又提供了基于histogram 的算法。
    • lightgbm 使用的是基于histogram 的算法。


3.2.2 leaf-wise 生長策略

  1. 大部分梯度提升樹算法采用level-wise?的葉子生長策略:

lightgbm?采用leaf-wise?的葉子生長策略:

  1. level-wise?:

    • 優(yōu)點(diǎn):過一遍數(shù)據(jù)可以同時(shí)分裂同一層的葉子,容易進(jìn)行多線程優(yōu)化,也好控制模型復(fù)雜度,不容易過擬合。
    • 缺點(diǎn):實(shí)際上level-wise是一種低效算法 。它不加區(qū)分的對(duì)待同一層的葉子,帶來了很多沒必要的開銷:實(shí)際上很多葉子的分裂增益較低,沒必要進(jìn)行搜索和分裂。
  2. leaf-wise:是一種更為高效的策略。每次從當(dāng)前所有葉子中,找到分裂增益最大的一個(gè)葉子來分裂。

    • 優(yōu)點(diǎn):同level-wise?相比,在分裂次數(shù)相同的情況下,leaf-wise?可以降低更多的誤差,得到更好的精度。

    • 缺點(diǎn):可能會(huì)長出比較深的決策樹,產(chǎn)生過擬合。

      因此?lightgbm?在?leaf-wise?之上增加了一個(gè)最大深度限制,在保證高效率的同時(shí)防止過擬合。


3.2.3 直方圖做差加速

  1. 通常構(gòu)造直方圖,需要遍歷該葉子上的所有數(shù)據(jù)。但是事實(shí)上一個(gè)葉子的直方圖可以由它的父親結(jié)點(diǎn)的直方圖與它兄弟的直方圖做差得到。

    LightGBM?在構(gòu)造一個(gè)葉子的直方圖后,可以用非常微小的代價(jià)得到它兄弟葉子的直方圖,在速度上可以提升一倍。


3.2.4 直接支持 categorical 特征

  1. 通常對(duì)categorical?特征進(jìn)行one-hot?編碼,但是這個(gè)做法在決策樹學(xué)習(xí)中并不好:對(duì)于取值集合較多的categorical feature,學(xué)習(xí)到的樹模型會(huì)非常不平衡;樹的深度需要很深才能達(dá)到較高的準(zhǔn)確率。

    LightGBM?直接支持categorical?特征。(因?yàn)榛谥狈綀D 所有天然的 每個(gè)值就是一個(gè)分桶)


3.2.5 并行優(yōu)化


3.2.5.1 特征并行

  1. 傳統(tǒng)的特征并行算法主要體現(xiàn)在決策樹中的最優(yōu)拆分過程中的并行化處理:

    • 沿特征維度垂直劃分?jǐn)?shù)據(jù)集,使得不同機(jī)器具有不同的特征集合。(多機(jī)子)
    • 在本地?cái)?shù)據(jù)集中尋找最佳劃分點(diǎn):(劃分特征,劃分閾值)
    • 將所有機(jī)器上的最佳劃分點(diǎn)整合,得到全局的最佳劃分點(diǎn)。
    • 利用全局最佳劃分點(diǎn)對(duì)數(shù)據(jù)集進(jìn)行劃分,完成本次最優(yōu)拆分過程。
  2. LightGBM?在特征并行上進(jìn)行了優(yōu)化,流程如下:

    • 每個(gè)機(jī)器都有全部樣本的全部特征集合。

    • 每個(gè)機(jī)器在本地?cái)?shù)據(jù)集中尋找最佳劃分點(diǎn):(劃分特征,劃分閾值)?。

      但是不同的機(jī)器在不同的特征集上運(yùn)行。

    • 將所有機(jī)器上的最佳劃分點(diǎn)整合,得到全局的最佳劃分點(diǎn)。

    • 利用全局最佳劃分點(diǎn)對(duì)數(shù)據(jù)集進(jìn)行劃分,完成本次最優(yōu)拆分過程。

  3. LightGBM?不再沿特征維度垂直劃分?jǐn)?shù)據(jù)集,而是每個(gè)機(jī)器都有全部樣本的全部特征集合。這樣就節(jié)省了數(shù)據(jù)劃分的通信開銷。

    • 傳統(tǒng)的特征并行算法需要在每次最優(yōu)拆分中,對(duì)數(shù)據(jù)劃分并分配到每臺(tái)機(jī)器上。
    • LightGBM 特征并行算法只需要在程序開始時(shí),將全量樣本拷貝到每個(gè)機(jī)器上。

    二者交換的數(shù)據(jù)相差不大,但是后者花費(fèi)的時(shí)間更少。

  4. LightGBM?的特征并行算法在數(shù)據(jù)量很大時(shí),仍然存在計(jì)算上的局限。因此建議在數(shù)據(jù)量很大時(shí)采用數(shù)據(jù)并行。


3.2.5.2 數(shù)據(jù)并行

  1. 傳統(tǒng)的數(shù)據(jù)并行算法主要體現(xiàn)在決策樹的學(xué)習(xí)過程中的并行化處理:

    • 水平劃分?jǐn)?shù)據(jù)集,使得不同機(jī)器具有不同的樣本集合。
    • 以本地?cái)?shù)據(jù)集構(gòu)建本地直方圖
    • 將本地直方圖整合為全局直方圖
    • 在全局直方圖中尋找最佳劃分點(diǎn)。
  2. LightGBM?在數(shù)據(jù)并行上進(jìn)行了優(yōu)化,流程如下:

    • LightGBM 使用Reduce scatter 的方式對(duì)不同機(jī)器上的不同特征進(jìn)行整合。每個(gè)機(jī)器從本地整合直方圖中尋找最佳劃分點(diǎn),并同步到全局最佳劃分點(diǎn)中。
    • LightGBM 通過直方圖做差分加速。

20210113

案例

GBDT算法原理以及實(shí)例理解_Freemanzxp-CSDN博客_gbdt算法

gbdt詳解_kyle1314608的博客-CSDN博客_gbdt

重點(diǎn)

gbdt 的算法的流程?
gbdt 如何選擇特征 ?
gbdt 如何構(gòu)建特征 ?
gbdt 如何用于分類?
gbdt 通過什么方式減少誤差 ?
gbdt的效果相比于傳統(tǒng)的LR,SVM效果為什么好一些 ?
gbdt 如何加速訓(xùn)練?
gbdt的參數(shù)有哪些,如何調(diào)參 ?
gbdt 實(shí)戰(zhàn)當(dāng)中遇到的一些問題 ?
gbdt的優(yōu)缺點(diǎn) ?

機(jī)器學(xué)習(xí)算法GBDT - Alexander - 博客園

今天是周末,之前給自己定了一個(gè)小目標(biāo):每周都要寫一篇博客,不管是關(guān)于什么內(nèi)容的都行,關(guān)鍵在于總結(jié)和思考,今天我選的主題是梯度提升樹的一些方法,主要從這些方法的原理以及實(shí)現(xiàn)過程入手講解這個(gè)問題。

本文按照這些方法出現(xiàn)的先后順序敘述。

GBDT

梯度提升樹實(shí)在提升樹的基礎(chǔ)上發(fā)展而來的一種使用范圍更廣的方法,當(dāng)處理回歸問題時(shí),提升樹可以看作是梯度提升樹的特例(分類問題時(shí)是不是特例?)。 因?yàn)樘嵘龢湓跇?gòu)建樹每一步的過程中都是去擬合上一步獲得模型在訓(xùn)練集上的殘差。后面我們將會(huì)介紹,這個(gè)殘存正好是損失函數(shù)的梯度,對(duì)應(yīng)于GBDT每一步要擬合的對(duì)象。

主要思想

在目標(biāo)函數(shù)所在的函數(shù)空間中做梯度下降,即把待求的函數(shù)模型當(dāng)作參數(shù),每一步要擬合目標(biāo)函數(shù)關(guān)于上一步獲得的模型的梯度,從而使得參數(shù)朝著最小化目標(biāo)函數(shù)的方向更新。

一些特性

  1. 每次迭代獲得的決策樹模型都要乘以一個(gè)縮減系數(shù),從而降低每棵樹的作用,提升可學(xué)習(xí)空間。
  2. 每次迭代擬合的是一階梯度。

XGBoost

XGBoost 是GBDT的一個(gè)變種,最大的區(qū)別是xgboost通過對(duì)目標(biāo)函數(shù)做二階泰勒展開,從而求出下一步要擬合的樹的葉子節(jié)點(diǎn)權(quán)重(需要先確定樹的結(jié)構(gòu)),從而根據(jù)損失函數(shù)求出每一次分裂節(jié)點(diǎn)的損失減小的大小,從而根據(jù)分裂損失選擇合適的屬性進(jìn)行分裂。

這個(gè)利用二階展開的到的損失函數(shù)公式與分裂節(jié)點(diǎn)的過程是息息相關(guān)的。先遍歷所有節(jié)點(diǎn)的所有屬性進(jìn)行分裂,假設(shè)選擇了這個(gè)a屬性的一個(gè)取值作為分裂節(jié)點(diǎn),根據(jù)泰勒展開求得的公式可計(jì)算該樹結(jié)構(gòu)各個(gè)葉子節(jié)點(diǎn)的權(quán)重,從而計(jì)算損失減小的程度,從而綜合各個(gè)屬性選擇使得損失減小最大的那個(gè)特征作為當(dāng)前節(jié)點(diǎn)的分裂屬性。依次類推,直到滿足終止條件。

一些特性

  1. 除了類似于GBDT的縮減系數(shù)外,xgboost對(duì)每棵樹的葉子節(jié)點(diǎn)個(gè)數(shù)和權(quán)重都做了懲罰,避免過擬合
  2. 類似于隨機(jī)森林,XGBoost在構(gòu)建樹的過程中,對(duì)每棵樹隨機(jī)選擇一些屬性作為分裂屬性。
  3. 分裂算法有兩種,一種是精確的分裂,一種是近似分裂算法,精確分裂算法就是把每個(gè)屬性的每個(gè)取值都當(dāng)作一次閾值進(jìn)行遍歷,采用的決策樹是CART。近似分裂算法是對(duì)每個(gè)屬性的所有取值進(jìn)行分桶,按照各個(gè)桶之間的值作為劃分閾值,xgboost提出了一個(gè)特殊的分桶策略,一般的分桶策略是每個(gè)樣本的權(quán)重都是相同 的,但是xgboost使每個(gè)樣本的權(quán)重為損失函數(shù)在該樣本點(diǎn)的二階導(dǎo)(泰勒展開不應(yīng)該是損失函數(shù)關(guān)于模型的展開嗎?為什么會(huì)有在該樣本點(diǎn)的二階導(dǎo)這種說法? 因?yàn)槟P褪菍?duì)所有樣本點(diǎn)都通用的,把該樣本輸入到二階導(dǎo)公式中就可以得到了)。

  4. xgboost添加了對(duì)稀疏數(shù)據(jù)的支持,在計(jì)算分裂收益的時(shí)候只利用沒有missing值的那些樣本,但是在推理的時(shí)候,也就是在確定了樹的結(jié)構(gòu),需要將樣本映射到葉子節(jié)點(diǎn)的時(shí)候,需要對(duì)含有缺失值的樣本進(jìn)行劃分,xgboost分別假設(shè)該樣本屬于左子樹和右子樹,比較兩者分裂增益,選擇增益較大的那一邊作為該樣本的分裂方向。

  5. xgboost在實(shí)現(xiàn)上支持并行化,這里的并行化并不是類似于rf那樣樹與樹之間的并行化,xgboost同boosting方法一樣,在樹的粒度上是串行的,但是在構(gòu)建樹的過程中,也就是在分裂節(jié)點(diǎn)的時(shí)候支持并行化,比如同時(shí)計(jì)算多個(gè)屬性的多個(gè)取值作為分裂特征及其值,然后選擇收益最大的特征及其取值對(duì)節(jié)點(diǎn)分裂。

  6. xgboost 在實(shí)現(xiàn)時(shí),需要將所有數(shù)據(jù)導(dǎo)入內(nèi)存,做一次pre-sort(exact algorithm),這樣在選擇分裂節(jié)點(diǎn)時(shí)比較迅速。

缺點(diǎn)

  1. level-wise 建樹方式對(duì)當(dāng)前層的所有葉子節(jié)點(diǎn)一視同仁,有些葉子節(jié)點(diǎn)分裂收益非常小,對(duì)結(jié)果沒影響,但還是要分裂,加重了計(jì)算代價(jià)。
  2. 預(yù)排序方法空間消耗比較大,不僅要保存特征值,也要保存特征的排序索引,同時(shí)時(shí)間消耗也大,在遍歷每個(gè)分裂點(diǎn)時(shí)都要計(jì)算分裂增益(不過這個(gè)缺點(diǎn)可以被近似算法所克服)

lightGBM

Features · microsoft/LightGBM Wiki · GitHub
關(guān)于lightGBM的論文目前并沒有放出來,只是從網(wǎng)上一些信息得出以下的一些與xgboost不同的地方:

  • 3、max_depth[默認(rèn)6]

    表示樹的最大深度。也是用來避免過擬合的。當(dāng)它的值越大時(shí),模型會(huì)學(xué)到更具體更局部的樣本,可能會(huì)導(dǎo)致過擬合。需要使用CV函數(shù)來進(jìn)行調(diào)優(yōu)。 典型值:3-10

    4、max_leaf_nodes

    表示樹上最大的節(jié)點(diǎn)或葉子的數(shù)量。可以替代max_depth的作用。因?yàn)槿绻傻氖嵌鏄?#xff0c;一個(gè)深度為n的樹最多生成n2個(gè)葉子。??

    1. xgboost采用的是level-wise的分裂策略,而lightGBM采用了leaf-wise的策略,區(qū)別是xgboost對(duì)每一層所有節(jié)點(diǎn)做無差別分裂,可能有些節(jié)點(diǎn)的增益非常小,對(duì)結(jié)果影響不大,但是xgboost也進(jìn)行了分裂,帶來了務(wù)必要的開銷。 leaft-wise的做法是在當(dāng)前所有葉子節(jié)點(diǎn)中選擇分裂收益最大的節(jié)點(diǎn)進(jìn)行分裂,如此遞歸進(jìn)行,很明顯leaf-wise這種做法容易過擬合,因?yàn)槿菀紫萑氡容^高的深度中,因此需要對(duì)最大深度做限制,從而避免過擬合。

    2. lightgbm使用了基于histogram的決策樹算法,這一點(diǎn)不同與xgboost中的 exact 算法,histogram算法在內(nèi)存和計(jì)算代價(jià)上都有不小優(yōu)勢(shì)。
      -. 內(nèi)存上優(yōu)勢(shì):很明顯,直方圖算法的內(nèi)存消耗為(#data* #features * 1Bytes)(因?yàn)閷?duì)特征分桶后只需保存特征離散化之后的值),而xgboost的exact算法內(nèi)存消耗為:(2 * #data * #features* 4Bytes),因?yàn)閤gboost既要保存原始feature的值,也要保存這個(gè)值的順序索引,這些值需要32位的浮點(diǎn)數(shù)來保存。
      -. 計(jì)算上的優(yōu)勢(shì),預(yù)排序算法在選擇好分裂特征計(jì)算分裂收益時(shí)需要遍歷所有樣本的特征值,時(shí)間為(#data),而直方圖算法只需要遍歷桶就行了,時(shí)間為(#bin)

    3. 直方圖做差加速
      -. 一個(gè)子節(jié)點(diǎn)的直方圖可以通過父節(jié)點(diǎn)的直方圖減去兄弟節(jié)點(diǎn)的直方圖得到,從而加速計(jì)算。

    4. lightgbm支持直接輸入categorical 的feature
      -. 在對(duì)離散特征分裂時(shí),每個(gè)取值都當(dāng)作一個(gè)桶,分裂時(shí)的增益算的是”是否屬于某個(gè)category“的gain。類似于one-hot編碼。

    5. 但實(shí)際上xgboost的近似直方圖算法也類似于lightgbm這里的直方圖算法,為什么xgboost的近似算法比lightgbm還是慢很多呢?
      -. xgboost在每一層都動(dòng)態(tài)構(gòu)建直方圖, 因?yàn)閤gboost的直方圖算法不是針對(duì)某個(gè)特定的feature,而是所有feature共享一個(gè)直方圖(每個(gè)樣本的權(quán)重是二階導(dǎo)),所以每一層都要重新構(gòu)建直方圖,而lightgbm中對(duì)每個(gè)特征都有一個(gè)直方圖,所以構(gòu)建一次直方圖就夠了。
      -. lightgbm做了cache優(yōu)化?

    6. lightgbm哪些方面做了并行?
      -. feature parallel
      一般的feature parallel就是對(duì)數(shù)據(jù)做垂直分割(partiion data vertically,就是對(duì)屬性分割),然后將分割后的數(shù)據(jù)分散到各個(gè)workder上,各個(gè)workers計(jì)算其擁有的數(shù)據(jù)的best splits point, 之后再匯總得到全局最優(yōu)分割點(diǎn)。但是lightgbm說這種方法通訊開銷比較大,lightgbm的做法是每個(gè)worker都擁有所有數(shù)據(jù),再分割?(沒懂,既然每個(gè)worker都有所有數(shù)據(jù)了,再匯總有什么意義?這個(gè)并行體現(xiàn)在哪里??)
      -. data parallel
      傳統(tǒng)的data parallel是將對(duì)數(shù)據(jù)集進(jìn)行劃分,也叫 平行分割(partion data horizontally), 分散到各個(gè)workers上之后,workers對(duì)得到的數(shù)據(jù)做直方圖,匯總各個(gè)workers的直方圖得到全局的直方圖。 lightgbm也claim這個(gè)操作的通訊開銷較大,lightgbm的做法是使用”Reduce Scatter“機(jī)制,不匯總所有直方圖,只匯總不同worker的不同feature的直方圖(原理?),在這個(gè)匯總的直方圖上做split,最后同步。??

    7. ??GBDT算法原理以及實(shí)例理解_Freemanzxp-CSDN博客_gbdt算法? gbdt原理和案例

    8. xgboost重要參數(shù)1_kyle1314608的博客-CSDN博客?xgboost 參數(shù)1

    9. ??xgboost重要參數(shù)2為主但不全要參照1_kyle1314608的博客-CSDN博客? ?xgboost 參數(shù)2

    • 3、max_depth[默認(rèn)6]

      表示樹的最大深度。也是用來避免過擬合的。當(dāng)它的值越大時(shí),模型會(huì)學(xué)到更具體更局部的樣本,可能會(huì)導(dǎo)致過擬合。需要使用CV函數(shù)來進(jìn)行調(diào)優(yōu)。 典型值:3-10

      4、max_leaf_nodes

      表示樹上最大的節(jié)點(diǎn)或葉子的數(shù)量。可以替代max_depth的作用。因?yàn)槿绻傻氖嵌鏄?#xff0c;一個(gè)深度為n的樹最多生成n2個(gè)葉子。

    • 二者可以任選其一

總結(jié)

以上是生活随笔為你收集整理的梯度提升决策树(GBDT)与XGBoost、LightGBM的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

日日躁夜夜躁狠狠躁 | 鲁一鲁av2019在线 | 久久国语露脸国产精品电影 | 国产人妖乱国产精品人妖 | 国产亚洲精品久久久久久大师 | 国产精品免费大片 | 色诱久久久久综合网ywww | 无码成人精品区在线观看 | 亚洲天堂2017无码 | 性史性农村dvd毛片 | 国产成人无码av片在线观看不卡 | 亚洲无人区午夜福利码高清完整版 | 少妇无码一区二区二三区 | 欧美日韩精品 | 国产又粗又硬又大爽黄老大爷视 | 荫蒂被男人添的好舒服爽免费视频 | 人人妻人人澡人人爽精品欧美 | 四十如虎的丰满熟妇啪啪 | 最近的中文字幕在线看视频 | 国产成人综合在线女婷五月99播放 | 国产农村妇女高潮大叫 | 国产精品高潮呻吟av久久4虎 | 日本肉体xxxx裸交 | 乱人伦中文视频在线观看 | 波多野结衣av一区二区全免费观看 | 久久五月精品中文字幕 | 成人无码精品一区二区三区 | 又粗又大又硬又长又爽 | 久久国产精品二国产精品 | 久久人妻内射无码一区三区 | 欧美日韩一区二区综合 | 成人欧美一区二区三区黑人 | 欧美三级不卡在线观看 | 无遮挡国产高潮视频免费观看 | 未满小14洗澡无码视频网站 | 久久午夜无码鲁丝片秋霞 | 国产偷国产偷精品高清尤物 | 日韩成人一区二区三区在线观看 | 少妇久久久久久人妻无码 | 天天做天天爱天天爽综合网 | 无码人妻精品一区二区三区不卡 | 久久99热只有频精品8 | 天堂无码人妻精品一区二区三区 | 中文精品无码中文字幕无码专区 | 无套内谢的新婚少妇国语播放 | 天堂亚洲免费视频 | 野外少妇愉情中文字幕 | 88国产精品欧美一区二区三区 | 中国女人内谢69xxxxxa片 | 欧美高清在线精品一区 | 国内精品一区二区三区不卡 | 亚洲色在线无码国产精品不卡 | 亚洲成在人网站无码天堂 | 成人亚洲精品久久久久软件 | 波多野结衣高清一区二区三区 | www国产亚洲精品久久网站 | 欧美兽交xxxx×视频 | 人妻尝试又大又粗久久 | 久久成人a毛片免费观看网站 | 成年美女黄网站色大免费全看 | 国产亚洲tv在线观看 | 午夜无码人妻av大片色欲 | 国产精品久久久久无码av色戒 | 99久久精品午夜一区二区 | 久久精品国产大片免费观看 | 亚洲成av人片在线观看无码不卡 | 狠狠色色综合网站 | 色综合久久中文娱乐网 | 国产精品人人爽人人做我的可爱 | 久久国产精品精品国产色婷婷 | 中文字幕人妻无码一区二区三区 | 国产成人无码a区在线观看视频app | 女人被男人躁得好爽免费视频 | 亚洲色偷偷偷综合网 | 久久精品丝袜高跟鞋 | 国产成人精品无码播放 | 少妇人妻偷人精品无码视频 | 久久精品人妻少妇一区二区三区 | 99久久久无码国产精品免费 | 狠狠cao日日穞夜夜穞av | 东北女人啪啪对白 | 欧美成人午夜精品久久久 | 日韩人妻无码中文字幕视频 | 中文字幕乱码亚洲无线三区 | a在线亚洲男人的天堂 | 亚洲狠狠婷婷综合久久 | 人妻与老人中文字幕 | 亚洲中文字幕av在天堂 | 精品国产青草久久久久福利 | 欧美xxxxx精品 | 在线亚洲高清揄拍自拍一品区 | 女人被爽到呻吟gif动态图视看 | 俺去俺来也在线www色官网 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 夜夜躁日日躁狠狠久久av | 综合激情五月综合激情五月激情1 | 老司机亚洲精品影院无码 | 欧美人与善在线com | 亚洲а∨天堂久久精品2021 | 动漫av网站免费观看 | 亚洲精品午夜国产va久久成人 | 国产在线一区二区三区四区五区 | 精品国产国产综合精品 | 久久人人爽人人爽人人片av高清 | 三上悠亚人妻中文字幕在线 | 激情爆乳一区二区三区 | 人人超人人超碰超国产 | 欧美乱妇无乱码大黄a片 | 人妻aⅴ无码一区二区三区 | 精品偷拍一区二区三区在线看 | 亚洲国产av精品一区二区蜜芽 | 亚洲精品中文字幕乱码 | 欧美人与物videos另类 | 久久综合色之久久综合 | 国产偷抇久久精品a片69 | 午夜精品一区二区三区的区别 | 欧洲精品码一区二区三区免费看 | 亚洲国产精品成人久久蜜臀 | 俺去俺来也www色官网 | 国内精品一区二区三区不卡 | 亚洲人成网站免费播放 | √8天堂资源地址中文在线 | 色婷婷欧美在线播放内射 | 美女黄网站人色视频免费国产 | 无码人妻黑人中文字幕 | 午夜精品久久久内射近拍高清 | 中文字幕日韩精品一区二区三区 | 一本久久a久久精品亚洲 | 亚洲s色大片在线观看 | 日韩精品无码一区二区中文字幕 | 亚洲欧洲日本综合aⅴ在线 | 婷婷五月综合激情中文字幕 | 久久综合九色综合欧美狠狠 | 高清无码午夜福利视频 | 奇米影视7777久久精品 | 国产精品久久久av久久久 | 国色天香社区在线视频 | 国产在线精品一区二区三区直播 | 亚洲欧洲中文日韩av乱码 | 成人亚洲精品久久久久软件 | 国产成人无码av片在线观看不卡 | 无码av免费一区二区三区试看 | 亚洲一区二区三区国产精华液 | 国产精品.xx视频.xxtv | 丰满人妻被黑人猛烈进入 | 久久99精品久久久久久动态图 | 免费看男女做好爽好硬视频 | 又黄又爽又色的视频 | 国产精品美女久久久 | 国产成人综合色在线观看网站 | 中文字幕人妻无码一夲道 | 久久国产36精品色熟妇 | 国内少妇偷人精品视频 | 成人精品视频一区二区 | 一本久久a久久精品亚洲 | 最近免费中文字幕中文高清百度 | 国内精品人妻无码久久久影院蜜桃 | 丰满少妇人妻久久久久久 | 免费人成在线视频无码 | 久久精品中文字幕大胸 | 国产乱人无码伦av在线a | 国产三级精品三级男人的天堂 | 天天摸天天碰天天添 | 久久久久se色偷偷亚洲精品av | 99久久久无码国产aaa精品 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | aⅴ亚洲 日韩 色 图网站 播放 | 中文毛片无遮挡高清免费 | 真人与拘做受免费视频 | 亚洲精品一区二区三区四区五区 | 成人三级无码视频在线观看 | 人妻人人添人妻人人爱 | 99在线 | 亚洲 | 色诱久久久久综合网ywww | 亚洲国产精品久久人人爱 | 亚洲自偷自偷在线制服 | 国产激情精品一区二区三区 | 日本欧美一区二区三区乱码 | 天天摸天天透天天添 | 成人动漫在线观看 | 小泽玛莉亚一区二区视频在线 | 76少妇精品导航 | 亚洲中文字幕无码一久久区 | 久久久久se色偷偷亚洲精品av | 少妇性l交大片欧洲热妇乱xxx | 学生妹亚洲一区二区 | 欧美大屁股xxxxhd黑色 | 内射白嫩少妇超碰 | 色婷婷综合激情综在线播放 | 久久99精品国产麻豆蜜芽 | 日本饥渴人妻欲求不满 | 亚洲成av人影院在线观看 | 国产精品爱久久久久久久 | 国产精品永久免费视频 | 国内精品人妻无码久久久影院 | a在线观看免费网站大全 | 色综合久久网 | 中国大陆精品视频xxxx | 欧美激情综合亚洲一二区 | 国产免费无码一区二区视频 | 久久久久久久女国产乱让韩 | 国产精品久久福利网站 | v一区无码内射国产 | 亚洲国产精品久久久天堂 | 综合激情五月综合激情五月激情1 | 日本又色又爽又黄的a片18禁 | 1000部啪啪未满十八勿入下载 | 国内精品久久久久久中文字幕 | 亚洲色大成网站www国产 | 国产成人无码一二三区视频 | 国产精品-区区久久久狼 | 性做久久久久久久免费看 | 好男人社区资源 | 老太婆性杂交欧美肥老太 | 亚洲成av人影院在线观看 | 欧美一区二区三区 | 亚洲一区二区三区四区 | 综合人妻久久一区二区精品 | 国内揄拍国内精品少妇国语 | 国产精品亚洲专区无码不卡 | 少妇性l交大片 | 丝袜 中出 制服 人妻 美腿 | 国产精品第一区揄拍无码 | 强伦人妻一区二区三区视频18 | 少妇一晚三次一区二区三区 | 久久精品无码一区二区三区 | 亚洲成熟女人毛毛耸耸多 | 国产无遮挡又黄又爽免费视频 | 久久午夜无码鲁丝片秋霞 | 国产麻豆精品精东影业av网站 | 日韩精品乱码av一区二区 | 国产精品无码永久免费888 | 国产av久久久久精东av | 国产精品99久久精品爆乳 | 中文字幕人成乱码熟女app | 国产人妻精品一区二区三区不卡 | 久久久亚洲欧洲日产国码αv | 在线观看国产一区二区三区 | 国产精品国产三级国产专播 | 久久久久久九九精品久 | 亚洲国产精品美女久久久久 | 人妻互换免费中文字幕 | 人妻有码中文字幕在线 | 亚洲の无码国产の无码步美 | 亚洲娇小与黑人巨大交 | 青青久在线视频免费观看 | 天堂久久天堂av色综合 | 久久www免费人成人片 | 精品一区二区三区无码免费视频 | 日韩人妻无码中文字幕视频 | 欧美丰满熟妇xxxx | 国产人妻精品午夜福利免费 | 久久久久99精品国产片 | 免费乱码人妻系列无码专区 | 18精品久久久无码午夜福利 | 天堂а√在线中文在线 | 国产两女互慰高潮视频在线观看 | 精品厕所偷拍各类美女tp嘘嘘 | 人妻尝试又大又粗久久 | 久久久久人妻一区精品色欧美 | 久久人人爽人人爽人人片av高清 | 久久精品国产一区二区三区肥胖 | 人人妻人人藻人人爽欧美一区 | 亚洲の无码国产の无码步美 | 国产精品办公室沙发 | 久久久精品456亚洲影院 | 成熟女人特级毛片www免费 | 综合激情五月综合激情五月激情1 | 日韩亚洲欧美精品综合 | 欧美怡红院免费全部视频 | 色一情一乱一伦一区二区三欧美 | 99久久无码一区人妻 | 最近中文2019字幕第二页 | 99久久99久久免费精品蜜桃 | 一本久道久久综合婷婷五月 | 久久综合九色综合97网 | 人人妻人人澡人人爽精品欧美 | 最近免费中文字幕中文高清百度 | 精品欧洲av无码一区二区三区 | 亚洲男人av天堂午夜在 | 人人妻人人澡人人爽人人精品 | 国产熟女一区二区三区四区五区 | 久久久成人毛片无码 | 天堂无码人妻精品一区二区三区 | 国产午夜视频在线观看 | 欧美高清在线精品一区 | 免费乱码人妻系列无码专区 | 亚洲国产午夜精品理论片 | 欧美日韩人成综合在线播放 | 欧美一区二区三区视频在线观看 | 国产高潮视频在线观看 | 亚洲国产精品一区二区美利坚 | 伊人久久婷婷五月综合97色 | 亚洲日韩中文字幕在线播放 | 扒开双腿疯狂进出爽爽爽视频 | 亚洲精品综合五月久久小说 | 55夜色66夜色国产精品视频 | 老熟女重囗味hdxx69 | 啦啦啦www在线观看免费视频 | 国产免费久久精品国产传媒 | av在线亚洲欧洲日产一区二区 | 中文字幕+乱码+中文字幕一区 | 丰满诱人的人妻3 | 2020久久香蕉国产线看观看 | 国产无套内射久久久国产 | 性生交片免费无码看人 | 成人免费视频在线观看 | 精品无码成人片一区二区98 | 成人女人看片免费视频放人 | 成人欧美一区二区三区黑人 | 99久久精品无码一区二区毛片 | 丝袜美腿亚洲一区二区 | 国产精品久久久午夜夜伦鲁鲁 | 成在人线av无码免观看麻豆 | 免费看男女做好爽好硬视频 | 亚洲の无码国产の无码影院 | 又粗又大又硬毛片免费看 | 国产偷国产偷精品高清尤物 | 国产精品第一国产精品 | 天堂亚洲免费视频 | 秋霞特色aa大片 | 国内精品久久毛片一区二区 | 综合激情五月综合激情五月激情1 | 色五月五月丁香亚洲综合网 | 亚洲大尺度无码无码专区 | 久久国内精品自在自线 | 无码人妻精品一区二区三区下载 | 亚洲日本va中文字幕 | 鲁鲁鲁爽爽爽在线视频观看 | 国产精品爱久久久久久久 | 精品国产麻豆免费人成网站 | 性史性农村dvd毛片 | 久9re热视频这里只有精品 | 黑人巨大精品欧美一区二区 | 日日碰狠狠躁久久躁蜜桃 | 久久www免费人成人片 | 内射巨臀欧美在线视频 | 中文字幕无码视频专区 | 双乳奶水饱满少妇呻吟 | 国产又爽又猛又粗的视频a片 | 波多野结衣乳巨码无在线观看 | 国产精品成人av在线观看 | 久久亚洲中文字幕精品一区 | 色综合久久久久综合一本到桃花网 | 夜夜影院未满十八勿进 | 久久久久久亚洲精品a片成人 | 好爽又高潮了毛片免费下载 | 精品国产麻豆免费人成网站 | 精品 日韩 国产 欧美 视频 | 精品国产成人一区二区三区 | 久久精品成人欧美大片 | 国产另类ts人妖一区二区 | 亚洲阿v天堂在线 | 精品久久久久久人妻无码中文字幕 | av无码不卡在线观看免费 | 高潮毛片无遮挡高清免费视频 | 久久久国产精品无码免费专区 | 久久久亚洲欧洲日产国码αv | 亚洲の无码国产の无码影院 | 国产亚洲欧美日韩亚洲中文色 | 亚洲国产一区二区三区在线观看 | 亚洲中文字幕乱码av波多ji | 亚洲日韩av片在线观看 | 国产女主播喷水视频在线观看 | 亚拍精品一区二区三区探花 | 国产精品免费大片 | 国色天香社区在线视频 | 亚洲一区二区三区含羞草 | 精品国精品国产自在久国产87 | 青春草在线视频免费观看 | 欧美zoozzooz性欧美 | 美女毛片一区二区三区四区 | 久久久av男人的天堂 | 精品 日韩 国产 欧美 视频 | 久久综合九色综合欧美狠狠 | 欧美一区二区三区 | 丰满人妻精品国产99aⅴ | 亚洲成av人片在线观看无码不卡 | 欧美黑人巨大xxxxx | 强奷人妻日本中文字幕 | 国产激情综合五月久久 | 日本爽爽爽爽爽爽在线观看免 | 久久五月精品中文字幕 | 欧洲熟妇精品视频 | 丰满少妇弄高潮了www | 水蜜桃亚洲一二三四在线 | 亚洲男女内射在线播放 | 亚洲欧洲日本综合aⅴ在线 | 精品国产精品久久一区免费式 | 无码国产激情在线观看 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 免费国产成人高清在线观看网站 | 正在播放东北夫妻内射 | 扒开双腿疯狂进出爽爽爽视频 | 黑人巨大精品欧美黑寡妇 | 人人妻人人藻人人爽欧美一区 | 国产av人人夜夜澡人人爽麻豆 | 欧美freesex黑人又粗又大 | 国产精品高潮呻吟av久久4虎 | 特大黑人娇小亚洲女 | 久久久久亚洲精品男人的天堂 | 亚洲七七久久桃花影院 | 久久国产精品萌白酱免费 | 国产人妻久久精品二区三区老狼 | 人人超人人超碰超国产 | 99久久精品国产一区二区蜜芽 | 国产成人无码午夜视频在线观看 | 青青青爽视频在线观看 | 极品尤物被啪到呻吟喷水 | 精品久久综合1区2区3区激情 | 久久精品中文字幕大胸 | 乌克兰少妇性做爰 | 久久久久久av无码免费看大片 | 丰满诱人的人妻3 | 国产精品爱久久久久久久 | 日本欧美一区二区三区乱码 | 两性色午夜视频免费播放 | 亚洲精品一区二区三区在线 | 欧美喷潮久久久xxxxx | 亚洲乱码国产乱码精品精 | 性欧美牲交xxxxx视频 | 无码人妻出轨黑人中文字幕 | 国产成人精品三级麻豆 | 亚洲自偷自偷在线制服 | 高清国产亚洲精品自在久久 | 欧美三级a做爰在线观看 | 日韩少妇白浆无码系列 | 中文字幕日韩精品一区二区三区 | 东京一本一道一二三区 | 2020久久香蕉国产线看观看 | 无套内射视频囯产 | 欧美黑人性暴力猛交喷水 | 中文字幕无码人妻少妇免费 | 色婷婷久久一区二区三区麻豆 | 熟妇人妻激情偷爽文 | 精品夜夜澡人妻无码av蜜桃 | 午夜精品一区二区三区的区别 | 精品人妻中文字幕有码在线 | 国产无遮挡又黄又爽免费视频 | 成在人线av无码免费 | 欧美人与禽猛交狂配 | 中文毛片无遮挡高清免费 | 久久久国产精品无码免费专区 | 国产97人人超碰caoprom | 人人妻人人澡人人爽人人精品 | 偷窥日本少妇撒尿chinese | 欧美日韩视频无码一区二区三 | 久久亚洲精品中文字幕无男同 | 无码av免费一区二区三区试看 | 婷婷综合久久中文字幕蜜桃三电影 | 国产一区二区三区四区五区加勒比 | 荫蒂被男人添的好舒服爽免费视频 | 成在人线av无码免观看麻豆 | 国产婷婷色一区二区三区在线 | 欧洲熟妇色 欧美 | 在教室伦流澡到高潮hnp视频 | 国产欧美熟妇另类久久久 | 一本加勒比波多野结衣 | 樱花草在线社区www | 欧美丰满老熟妇xxxxx性 | 亚洲熟熟妇xxxx | 成人欧美一区二区三区黑人免费 | 日韩少妇白浆无码系列 | 日本丰满护士爆乳xxxx | 日本精品人妻无码77777 天堂一区人妻无码 | 伊人久久大香线蕉av一区二区 | 国产手机在线αⅴ片无码观看 | 曰韩无码二三区中文字幕 | 日本成熟视频免费视频 | 久久精品99久久香蕉国产色戒 | 一本久久伊人热热精品中文字幕 | 人妻熟女一区 | 伊人久久大香线焦av综合影院 | 国产莉萝无码av在线播放 | 色欲av亚洲一区无码少妇 | 日本一区二区三区免费高清 | 巨爆乳无码视频在线观看 | 精品国产一区二区三区四区 | 性欧美大战久久久久久久 | 十八禁真人啪啪免费网站 | 黄网在线观看免费网站 | 亚洲码国产精品高潮在线 | 国产乡下妇女做爰 | 天海翼激烈高潮到腰振不止 | 亚洲国产成人av在线观看 | 亚洲精品一区二区三区婷婷月 | 99er热精品视频 | 国产一区二区三区日韩精品 | 国产亚洲欧美日韩亚洲中文色 | 狠狠色噜噜狠狠狠狠7777米奇 | 国内少妇偷人精品视频 | 男人扒开女人内裤强吻桶进去 | а√天堂www在线天堂小说 | 无码午夜成人1000部免费视频 | 久久久久免费看成人影片 | 亚洲va欧美va天堂v国产综合 | 日韩人妻少妇一区二区三区 | 欧美熟妇另类久久久久久多毛 | 夜夜夜高潮夜夜爽夜夜爰爰 | 亚洲精品一区二区三区在线 | 红桃av一区二区三区在线无码av | 欧美喷潮久久久xxxxx | 国内精品久久久久久中文字幕 | 国产成人综合色在线观看网站 | 久久久久久av无码免费看大片 | 亚洲一区二区三区偷拍女厕 | 色一情一乱一伦一视频免费看 | 色欲人妻aaaaaaa无码 | 成人影院yy111111在线观看 | 超碰97人人射妻 | 亚洲成av人片在线观看无码不卡 | 亚洲精品一区二区三区婷婷月 | 国产精品久久福利网站 | 亚洲无人区午夜福利码高清完整版 | 性欧美疯狂xxxxbbbb | 久久久精品人妻久久影视 | 亚洲熟妇色xxxxx欧美老妇 | 亚洲成a人片在线观看日本 | 国产sm调教视频在线观看 | 国产av剧情md精品麻豆 | 亚洲中文字幕va福利 | 国产成人无码区免费内射一片色欲 | 自拍偷自拍亚洲精品被多人伦好爽 | 色综合天天综合狠狠爱 | 久久亚洲a片com人成 | 国产莉萝无码av在线播放 | 少妇性荡欲午夜性开放视频剧场 | 亚洲午夜久久久影院 | 欧美肥老太牲交大战 | 日韩亚洲欧美精品综合 | 精品夜夜澡人妻无码av蜜桃 | 色五月丁香五月综合五月 | 麻豆果冻传媒2021精品传媒一区下载 | 日韩精品久久久肉伦网站 | 人妻天天爽夜夜爽一区二区 | 一二三四在线观看免费视频 | 波多野结衣高清一区二区三区 | 激情内射日本一区二区三区 | 久久精品无码一区二区三区 | 亚洲国产综合无码一区 | 久久99国产综合精品 | 亚洲国产精华液网站w | 成年美女黄网站色大免费全看 | 国产真实夫妇视频 | 内射巨臀欧美在线视频 | 无套内谢的新婚少妇国语播放 | 欧美xxxx黑人又粗又长 | 少妇性荡欲午夜性开放视频剧场 | 日日摸天天摸爽爽狠狠97 | 动漫av网站免费观看 | 久久久中文久久久无码 | 国产三级精品三级男人的天堂 | 亚洲国产欧美日韩精品一区二区三区 | 成人女人看片免费视频放人 | 国产人妻精品一区二区三区 | 亚洲第一网站男人都懂 | 亚洲精品美女久久久久久久 | 欧美真人作爱免费视频 | 久久久久成人片免费观看蜜芽 | 日日碰狠狠躁久久躁蜜桃 | 亚洲无人区一区二区三区 | 免费无码av一区二区 | 思思久久99热只有频精品66 | 亚洲国产成人a精品不卡在线 | 亚洲欧美中文字幕5发布 | 国产精品福利视频导航 | 国产精品香蕉在线观看 | 色婷婷综合中文久久一本 | 国产麻豆精品精东影业av网站 | 免费视频欧美无人区码 | 丁香啪啪综合成人亚洲 | 久久亚洲精品中文字幕无男同 | 欧美精品一区二区精品久久 | av在线亚洲欧洲日产一区二区 | 久久精品一区二区三区四区 | 国产电影无码午夜在线播放 | 中文字幕乱妇无码av在线 | 亚洲日韩av一区二区三区四区 | 天天爽夜夜爽夜夜爽 | 国内少妇偷人精品视频免费 | 亚洲乱亚洲乱妇50p | 色狠狠av一区二区三区 | 秋霞成人午夜鲁丝一区二区三区 | 亚洲狠狠婷婷综合久久 | 久久99久久99精品中文字幕 | 国产av剧情md精品麻豆 | 日日橹狠狠爱欧美视频 | 国产精品人人爽人人做我的可爱 | 四十如虎的丰满熟妇啪啪 | 国产av一区二区精品久久凹凸 | 色五月五月丁香亚洲综合网 | 久久亚洲日韩精品一区二区三区 | 久久精品中文闷骚内射 | 精品偷拍一区二区三区在线看 | 亚洲中文字幕久久无码 | 国产精品丝袜黑色高跟鞋 | 欧洲精品码一区二区三区免费看 | 大乳丰满人妻中文字幕日本 | 国产精品无码mv在线观看 | 国产偷国产偷精品高清尤物 | 国产精品igao视频网 | 精品国产aⅴ无码一区二区 | 日本大乳高潮视频在线观看 | 成人精品一区二区三区中文字幕 | 中文字幕无码人妻少妇免费 | 日本大香伊一区二区三区 | 亚洲大尺度无码无码专区 | 男女猛烈xx00免费视频试看 | 在线天堂新版最新版在线8 | 国产亚洲精品久久久久久大师 | 久久精品无码一区二区三区 | 亚洲一区二区三区在线观看网站 | 精品无码一区二区三区的天堂 | 玩弄少妇高潮ⅹxxxyw | 欧美熟妇另类久久久久久不卡 | 免费观看又污又黄的网站 | 丰满少妇人妻久久久久久 | 亚洲人成影院在线无码按摩店 | 四虎国产精品免费久久 | 国产精品成人av在线观看 | 亚洲一区二区观看播放 | 欧美成人家庭影院 | 日韩亚洲欧美精品综合 | 牲欲强的熟妇农村老妇女视频 | 亚洲精品国产精品乱码视色 | 国产亚洲精品久久久久久久 | 免费无码肉片在线观看 | 东北女人啪啪对白 | 无码人妻少妇伦在线电影 | 亚洲欧美日韩国产精品一区二区 | 国产成人无码区免费内射一片色欲 | 一本久道高清无码视频 | 国产激情综合五月久久 | 99久久久无码国产精品免费 | 岛国片人妻三上悠亚 | 精品国产国产综合精品 | 成人试看120秒体验区 | 成熟女人特级毛片www免费 | 国产精品沙发午睡系列 | 好屌草这里只有精品 | 欧洲vodafone精品性 | 撕开奶罩揉吮奶头视频 | 在线播放免费人成毛片乱码 | 亚洲综合精品香蕉久久网 | 女人被爽到呻吟gif动态图视看 | 久久精品人妻少妇一区二区三区 | 欧美国产日韩亚洲中文 | 欧美性黑人极品hd | 日韩亚洲欧美精品综合 | 清纯唯美经典一区二区 | 国产美女精品一区二区三区 | 亚洲精品国偷拍自产在线麻豆 | 5858s亚洲色大成网站www | 男人的天堂2018无码 | 国产午夜精品一区二区三区嫩草 | 欧美老人巨大xxxx做受 | 中文字幕无线码免费人妻 | 88国产精品欧美一区二区三区 | 亚洲精品欧美二区三区中文字幕 | 中文字幕无码日韩欧毛 | 日本爽爽爽爽爽爽在线观看免 | 亚洲中文字幕无码中文字在线 | 国产美女极度色诱视频www | 日本丰满护士爆乳xxxx | 久久久久久国产精品无码下载 | 久久国产劲爆∧v内射 | 亚洲中文字幕乱码av波多ji | 亚洲欧美精品aaaaaa片 | 国产一精品一av一免费 | 精品厕所偷拍各类美女tp嘘嘘 | 欧美日韩一区二区综合 | 小鲜肉自慰网站xnxx | 97久久国产亚洲精品超碰热 | 精品久久久久久亚洲精品 | 啦啦啦www在线观看免费视频 | 99久久久无码国产精品免费 | 动漫av网站免费观看 | 国产三级久久久精品麻豆三级 | 国产特级毛片aaaaaa高潮流水 | 国产亲子乱弄免费视频 | 久久99精品久久久久久 | 国产真实乱对白精彩久久 | 高潮喷水的毛片 | 国产人妻人伦精品1国产丝袜 | 美女张开腿让人桶 | 亚洲精品中文字幕久久久久 | 日本一区二区三区免费高清 | 国产亚av手机在线观看 | 国产深夜福利视频在线 | 性色欲情网站iwww九文堂 | www成人国产高清内射 | 天天av天天av天天透 | 色综合视频一区二区三区 | 内射后入在线观看一区 | 在线观看免费人成视频 | a国产一区二区免费入口 | 乱中年女人伦av三区 | 亚洲 欧美 激情 小说 另类 | 午夜不卡av免费 一本久久a久久精品vr综合 | 日日鲁鲁鲁夜夜爽爽狠狠 | 日本www一道久久久免费榴莲 | 成人女人看片免费视频放人 | 亚洲欧洲日本综合aⅴ在线 | 国产精品嫩草久久久久 | 国产精品手机免费 | 色窝窝无码一区二区三区色欲 | 精品无人区无码乱码毛片国产 | 性欧美疯狂xxxxbbbb | 色婷婷综合中文久久一本 | 天天躁日日躁狠狠躁免费麻豆 | 日韩成人一区二区三区在线观看 | 精品国产一区二区三区四区 | 久久久久久久女国产乱让韩 | 一本久道高清无码视频 | 中文毛片无遮挡高清免费 | 中文字幕日韩精品一区二区三区 | 亚洲人成影院在线无码按摩店 | av在线亚洲欧洲日产一区二区 | 给我免费的视频在线观看 | 亚洲色偷偷男人的天堂 | 日韩精品无码一区二区中文字幕 | 夜精品a片一区二区三区无码白浆 | 国产成人精品视频ⅴa片软件竹菊 | 国产亚洲精品久久久久久国模美 | 亚洲 激情 小说 另类 欧美 | 狠狠cao日日穞夜夜穞av | 国产无遮挡吃胸膜奶免费看 | 亚洲精品久久久久avwww潮水 | 欧美三级不卡在线观看 | 国产成人精品必看 | 国产真人无遮挡作爱免费视频 | 99久久亚洲精品无码毛片 | av无码不卡在线观看免费 | 18禁黄网站男男禁片免费观看 | 欧美国产亚洲日韩在线二区 | 熟妇人妻无乱码中文字幕 | 欧美性生交活xxxxxdddd | 国产午夜福利亚洲第一 | 亚洲自偷自拍另类第1页 | 无码帝国www无码专区色综合 | 中文字幕无码av波多野吉衣 | 老司机亚洲精品影院 | 强伦人妻一区二区三区视频18 | 亚洲 a v无 码免 费 成 人 a v | 亚洲一区二区三区含羞草 | 国产高清不卡无码视频 | 波多野结衣av一区二区全免费观看 | 青草视频在线播放 | 97久久超碰中文字幕 | 欧美人妻一区二区三区 | 国产成人无码av一区二区 | 自拍偷自拍亚洲精品被多人伦好爽 | 中文字幕无码视频专区 | 欧美精品一区二区精品久久 | 夜夜夜高潮夜夜爽夜夜爰爰 | 国产成人精品必看 | 国产在热线精品视频 | 精品无码av一区二区三区 | 国产乱人伦av在线无码 | 扒开双腿吃奶呻吟做受视频 | 国产香蕉97碰碰久久人人 | 日日躁夜夜躁狠狠躁 | 天海翼激烈高潮到腰振不止 | 亚洲aⅴ无码成人网站国产app | 国产99久久精品一区二区 | 国产午夜视频在线观看 | 好男人社区资源 | 无码国产激情在线观看 | 中文毛片无遮挡高清免费 | 久久精品中文字幕大胸 | 国内精品人妻无码久久久影院蜜桃 | 亚洲中文字幕无码中字 | 久久www免费人成人片 | 日日麻批免费40分钟无码 | 欧美亚洲日韩国产人成在线播放 | 欧美xxxxx精品 | 欧美黑人巨大xxxxx | 性生交大片免费看女人按摩摩 | 欧美熟妇另类久久久久久多毛 | 日韩精品一区二区av在线 | 欧美变态另类xxxx | 欧美丰满熟妇xxxx | 国产成人综合在线女婷五月99播放 | 国产成人无码专区 | 亚欧洲精品在线视频免费观看 | 丰满少妇弄高潮了www | 亚洲精品久久久久avwww潮水 | 久久精品一区二区三区四区 | 国产凸凹视频一区二区 | 国产色精品久久人妻 | 久久午夜无码鲁丝片 | 伊人久久婷婷五月综合97色 | 国产在热线精品视频 | 久久久www成人免费毛片 | 小泽玛莉亚一区二区视频在线 | 国产乱人伦av在线无码 | 欧美日韩亚洲国产精品 | 中文字幕无线码免费人妻 | 无码人妻av免费一区二区三区 | 一区二区三区高清视频一 | a在线亚洲男人的天堂 | 亚洲午夜福利在线观看 | 中文字幕乱码中文乱码51精品 | 久久精品国产99精品亚洲 | 久久精品国产精品国产精品污 | 久久zyz资源站无码中文动漫 | 免费人成网站视频在线观看 | 大肉大捧一进一出好爽视频 | 久久国产精品萌白酱免费 | 澳门永久av免费网站 | 国产av人人夜夜澡人人爽麻豆 | 日本大香伊一区二区三区 | 亚洲成色www久久网站 | 国产日产欧产精品精品app | 亚洲综合另类小说色区 | 久久人人爽人人爽人人片av高清 | 国产成人无码av片在线观看不卡 | 国产人妻大战黑人第1集 | 精品人妻人人做人人爽夜夜爽 | 色妞www精品免费视频 | 亚洲熟熟妇xxxx | 强伦人妻一区二区三区视频18 | 精品日本一区二区三区在线观看 | 国产疯狂伦交大片 | 免费人成在线观看网站 | 少妇无码一区二区二三区 | 人妻尝试又大又粗久久 | 丰满少妇熟乱xxxxx视频 | 欧美丰满熟妇xxxx性ppx人交 | 99久久人妻精品免费一区 | 欧美熟妇另类久久久久久不卡 | 免费无码一区二区三区蜜桃大 | 国产热a欧美热a在线视频 | 精品无码一区二区三区爱欲 | 成人欧美一区二区三区 | 狠狠色丁香久久婷婷综合五月 | 亚洲aⅴ无码成人网站国产app | 亚洲精品国产精品乱码视色 | 搡女人真爽免费视频大全 | 国产精品爱久久久久久久 | 亚洲成av人影院在线观看 | 亚洲国产高清在线观看视频 | 国产做国产爱免费视频 | 综合人妻久久一区二区精品 | 性欧美大战久久久久久久 | 国产性生交xxxxx无码 | 西西人体www44rt大胆高清 | 久久天天躁狠狠躁夜夜免费观看 | 国产9 9在线 | 中文 | 妺妺窝人体色www婷婷 | а√天堂www在线天堂小说 | 午夜精品久久久久久久久 | 色老头在线一区二区三区 | 久久久国产精品无码免费专区 | 亚洲 a v无 码免 费 成 人 a v | 亚洲另类伦春色综合小说 | 精品熟女少妇av免费观看 | 日日碰狠狠丁香久燥 | 国产午夜视频在线观看 | 久久久久久九九精品久 | 人人妻人人澡人人爽欧美一区 | 亚洲日本在线电影 | 亚洲国产精品无码一区二区三区 | 亚洲の无码国产の无码步美 | 亚洲一区二区观看播放 | 内射爽无广熟女亚洲 | 亚洲精品综合一区二区三区在线 | 中文字幕av日韩精品一区二区 | 久久精品国产一区二区三区 | 国产精品久久久 | 亚洲中文字幕在线观看 | 国产精品多人p群无码 | 成人亚洲精品久久久久软件 | 国产高潮视频在线观看 | 亚洲一区二区三区无码久久 | 丰满少妇人妻久久久久久 | 日本高清一区免费中文视频 | 男人和女人高潮免费网站 | 国产激情一区二区三区 | 丰满少妇高潮惨叫视频 | 亚洲精品久久久久avwww潮水 | 国产成人无码av在线影院 | 无码国模国产在线观看 | 天堂а√在线地址中文在线 | 中文久久乱码一区二区 | 精品国精品国产自在久国产87 | 牲欲强的熟妇农村老妇女视频 | 国产深夜福利视频在线 | 国产精品久久福利网站 | 国产亚洲人成在线播放 | 日韩精品a片一区二区三区妖精 | 日本高清一区免费中文视频 | 国产午夜亚洲精品不卡下载 | 国产成人无码av在线影院 | 亚洲一区二区三区国产精华液 | 日本在线高清不卡免费播放 | 成人无码精品一区二区三区 | 日韩视频 中文字幕 视频一区 | v一区无码内射国产 | 最新国产乱人伦偷精品免费网站 | 久久午夜无码鲁丝片秋霞 | 国内精品一区二区三区不卡 | 在线播放亚洲第一字幕 | 色狠狠av一区二区三区 | 久久国产精品萌白酱免费 | 久久久久久亚洲精品a片成人 | 国产精品第一区揄拍无码 | 国产特级毛片aaaaaa高潮流水 | 国产精品亚洲一区二区三区喷水 | 黑人大群体交免费视频 | 成人女人看片免费视频放人 | 无码人妻av免费一区二区三区 | 国产色视频一区二区三区 | aⅴ亚洲 日韩 色 图网站 播放 | 国产精品免费大片 | 澳门永久av免费网站 | 青青久在线视频免费观看 | 成人片黄网站色大片免费观看 | 久久精品国产大片免费观看 | 久久国产36精品色熟妇 | 日本高清一区免费中文视频 | 亚洲成av人综合在线观看 | 成人无码视频在线观看网站 | 午夜精品久久久久久久 | 色偷偷人人澡人人爽人人模 | 亚洲自偷精品视频自拍 | 国产精华av午夜在线观看 | 亚洲熟妇色xxxxx欧美老妇y | 丰满诱人的人妻3 | 国产精品办公室沙发 | 国产亚洲视频中文字幕97精品 | 欧美日本精品一区二区三区 | 亚洲日韩中文字幕在线播放 | 999久久久国产精品消防器材 | 人人爽人人爽人人片av亚洲 | 国产性生大片免费观看性 | 亚洲中文字幕在线无码一区二区 | 无码av中文字幕免费放 | 国产精品久久久久9999小说 | 亚洲成色在线综合网站 | 无码吃奶揉捏奶头高潮视频 | 扒开双腿吃奶呻吟做受视频 | 天下第一社区视频www日本 | 国产内射爽爽大片视频社区在线 | 少妇人妻偷人精品无码视频 | 国产偷抇久久精品a片69 | 国产午夜手机精彩视频 | 欧美人与动性行为视频 | 亚洲aⅴ无码成人网站国产app | 99精品久久毛片a片 | 精品一区二区三区无码免费视频 | 无遮挡国产高潮视频免费观看 | 影音先锋中文字幕无码 | 亚洲中文字幕在线观看 | 色婷婷av一区二区三区之红樱桃 | 久久综合色之久久综合 | 国产无遮挡又黄又爽又色 | 日本精品久久久久中文字幕 | 狠狠躁日日躁夜夜躁2020 | 欧美人与牲动交xxxx | 亚洲区小说区激情区图片区 | 中文无码伦av中文字幕 | 日日干夜夜干 | 在线а√天堂中文官网 | 伊人久久大香线蕉av一区二区 | 牛和人交xxxx欧美 | 最近中文2019字幕第二页 | 黑人巨大精品欧美一区二区 | 久久久久免费看成人影片 | 国产人妻精品午夜福利免费 | 永久免费精品精品永久-夜色 | 色妞www精品免费视频 | 欧美怡红院免费全部视频 | 成人无码影片精品久久久 | 亚洲色欲色欲天天天www | 国产精品久久久久久亚洲影视内衣 | 亚洲一区二区三区国产精华液 | 动漫av网站免费观看 | 色婷婷久久一区二区三区麻豆 | 日本va欧美va欧美va精品 | 成在人线av无码免费 | 国产性生交xxxxx无码 | 欧美日韩一区二区免费视频 | 成人免费视频视频在线观看 免费 | a在线观看免费网站大全 | 成人欧美一区二区三区黑人免费 | 亚洲 a v无 码免 费 成 人 a v | 日韩人妻无码一区二区三区久久99 | 又大又硬又黄的免费视频 | 色偷偷人人澡人人爽人人模 | 一区二区传媒有限公司 | 小泽玛莉亚一区二区视频在线 | 精品日本一区二区三区在线观看 | 午夜精品久久久久久久久 | 国产综合色产在线精品 | 77777熟女视频在线观看 а天堂中文在线官网 | 水蜜桃av无码 | 骚片av蜜桃精品一区 | 未满成年国产在线观看 | 国产av一区二区三区最新精品 | 久久精品成人欧美大片 | 国产亚洲精品精品国产亚洲综合 | 亚洲精品成a人在线观看 | 人人爽人人澡人人人妻 | 亚洲成色在线综合网站 | 蜜臀av无码人妻精品 | 久久国语露脸国产精品电影 | 国产超碰人人爽人人做人人添 | 国产精品嫩草久久久久 | 久久午夜夜伦鲁鲁片无码免费 | 国产超碰人人爽人人做人人添 | 乱人伦中文视频在线观看 | 亚洲无人区一区二区三区 | 人人妻人人藻人人爽欧美一区 | 日本大香伊一区二区三区 | 色综合久久中文娱乐网 | 国产 浪潮av性色四虎 | 精品国精品国产自在久国产87 | 国产av一区二区三区最新精品 | 色噜噜亚洲男人的天堂 | 亚洲自偷精品视频自拍 | 草草网站影院白丝内射 | 性色欲网站人妻丰满中文久久不卡 | 六十路熟妇乱子伦 | 亚洲中文字幕无码中文字在线 | 在线 国产 欧美 亚洲 天堂 | 久久视频在线观看精品 | 国产精品嫩草久久久久 | 日本成熟视频免费视频 | 欧洲极品少妇 | 国产激情无码一区二区app | 99精品无人区乱码1区2区3区 | 正在播放东北夫妻内射 | 久久精品一区二区三区四区 | 乌克兰少妇xxxx做受 | 欧美精品国产综合久久 | 老太婆性杂交欧美肥老太 | 亚洲爆乳精品无码一区二区三区 | 亚洲中文字幕无码中字 | 中文字幕无码人妻少妇免费 | 国产国语老龄妇女a片 | 亚洲成av人片在线观看无码不卡 | 内射爽无广熟女亚洲 | 国产特级毛片aaaaaa高潮流水 | 领导边摸边吃奶边做爽在线观看 | 亚洲 高清 成人 动漫 | 日本一区二区三区免费播放 | 中文精品久久久久人妻不卡 | 久久人人爽人人爽人人片ⅴ | 精品欧洲av无码一区二区三区 | 亚洲毛片av日韩av无码 | 夜精品a片一区二区三区无码白浆 | 2019nv天堂香蕉在线观看 | 日本精品少妇一区二区三区 | 色婷婷久久一区二区三区麻豆 | 成 人 网 站国产免费观看 | a在线观看免费网站大全 | 日韩精品无码一本二本三本色 | 国产无遮挡又黄又爽免费视频 | 宝宝好涨水快流出来免费视频 | 欧美高清在线精品一区 | 成人影院yy111111在线观看 | 国产超级va在线观看视频 | 少妇高潮喷潮久久久影院 | 97色伦图片97综合影院 | 亚洲精品一区二区三区在线观看 | 永久免费观看美女裸体的网站 | 天堂亚洲免费视频 | 色综合久久久无码中文字幕 | 欧美精品在线观看 | 亚洲成av人在线观看网址 | √天堂资源地址中文在线 | 88国产精品欧美一区二区三区 | 18禁黄网站男男禁片免费观看 | 久久精品视频在线看15 | 亚洲精品国偷拍自产在线麻豆 | 色婷婷香蕉在线一区二区 | 成人免费视频在线观看 | 极品尤物被啪到呻吟喷水 | 巨爆乳无码视频在线观看 | 午夜福利试看120秒体验区 | 中文字幕人妻无码一区二区三区 | 粗大的内捧猛烈进出视频 | 亚洲国产精品一区二区第一页 | 四虎国产精品一区二区 | 高清国产亚洲精品自在久久 | 中文字幕乱码中文乱码51精品 | 色综合久久中文娱乐网 | 午夜熟女插插xx免费视频 | 成人亚洲精品久久久久软件 | 黑人粗大猛烈进出高潮视频 | 久久久精品人妻久久影视 | 国产农村乱对白刺激视频 | 无码午夜成人1000部免费视频 | 久久精品丝袜高跟鞋 | 亚洲日韩av片在线观看 | 少妇人妻大乳在线视频 | 色狠狠av一区二区三区 | 无码国内精品人妻少妇 | 久久人妻内射无码一区三区 | 欧美国产日韩亚洲中文 | 久久精品无码一区二区三区 | 麻豆果冻传媒2021精品传媒一区下载 | 成人免费视频视频在线观看 免费 | 一本久久a久久精品亚洲 | 97se亚洲精品一区 | 色五月五月丁香亚洲综合网 | 综合网日日天干夜夜久久 | 四十如虎的丰满熟妇啪啪 | 精品欧洲av无码一区二区三区 | 高清不卡一区二区三区 | 国精产品一品二品国精品69xx | 亚洲va欧美va天堂v国产综合 | 久久天天躁狠狠躁夜夜免费观看 | 无码人妻精品一区二区三区不卡 | 人人爽人人澡人人人妻 | 日本精品久久久久中文字幕 | 婷婷色婷婷开心五月四房播播 | av人摸人人人澡人人超碰下载 | 中文字幕 人妻熟女 | 日日摸日日碰夜夜爽av | 成年女人永久免费看片 | 亚洲中文字幕在线无码一区二区 | 国产亚洲视频中文字幕97精品 | 日本熟妇浓毛 | 网友自拍区视频精品 | √天堂中文官网8在线 | 久久国内精品自在自线 | 久久精品国产日本波多野结衣 | 无码av最新清无码专区吞精 | 成人无码影片精品久久久 | 蜜桃臀无码内射一区二区三区 | 国产人妖乱国产精品人妖 | 国产无遮挡又黄又爽免费视频 | 亚洲精品国偷拍自产在线观看蜜桃 | 亚洲精品无码国产 | 清纯唯美经典一区二区 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 亚洲色欲色欲欲www在线 | 精品久久综合1区2区3区激情 | 亚洲精品美女久久久久久久 | 日本护士毛茸茸高潮 | 婷婷丁香五月天综合东京热 | 丁香啪啪综合成人亚洲 | 纯爱无遮挡h肉动漫在线播放 | 成熟女人特级毛片www免费 | 亚洲成熟女人毛毛耸耸多 | 色噜噜亚洲男人的天堂 | 亚洲精品美女久久久久久久 | 日韩精品a片一区二区三区妖精 | 久久五月精品中文字幕 | 曰韩少妇内射免费播放 | 亚洲高清偷拍一区二区三区 | 色 综合 欧美 亚洲 国产 | 精品国产乱码久久久久乱码 | 亚洲国产成人a精品不卡在线 | 精品乱子伦一区二区三区 | 国产尤物精品视频 | 欧美高清在线精品一区 | 欧美 日韩 人妻 高清 中文 | 中文字幕无码日韩欧毛 | 亚洲精品一区二区三区在线 | 中文字幕无码人妻少妇免费 | 麻豆国产丝袜白领秘书在线观看 | 自拍偷自拍亚洲精品被多人伦好爽 | 色欲综合久久中文字幕网 | 免费人成网站视频在线观看 | 亚洲午夜无码久久 | 天天av天天av天天透 | 高潮毛片无遮挡高清免费视频 | 99久久婷婷国产综合精品青草免费 | 伊在人天堂亚洲香蕉精品区 | 日本大香伊一区二区三区 | 精品久久综合1区2区3区激情 | 久久伊人色av天堂九九小黄鸭 | 午夜精品久久久内射近拍高清 | 精品国产麻豆免费人成网站 | 欧美 日韩 人妻 高清 中文 | 最近免费中文字幕中文高清百度 | 久久久国产精品无码免费专区 | 国语精品一区二区三区 | 麻豆成人精品国产免费 | 亚洲精品久久久久久久久久久 | 免费无码的av片在线观看 | 樱花草在线社区www | 日韩亚洲欧美精品综合 | 国产黄在线观看免费观看不卡 | 国产亚洲精品精品国产亚洲综合 | 色综合久久久无码网中文 | 久久婷婷五月综合色国产香蕉 | 国产午夜福利亚洲第一 | 国内老熟妇对白xxxxhd | 欧美精品免费观看二区 | 美女黄网站人色视频免费国产 | 亚洲国产精品成人久久蜜臀 | 精品夜夜澡人妻无码av蜜桃 | 国产片av国语在线观看 | 日本大乳高潮视频在线观看 | 国产精品va在线观看无码 | 亚洲性无码av中文字幕 | 久久精品中文字幕一区 | 国产亚洲精品久久久ai换 | 久久国语露脸国产精品电影 | 荫蒂添的好舒服视频囗交 | 国产无遮挡吃胸膜奶免费看 | 日日天干夜夜狠狠爱 | www国产亚洲精品久久网站 | 国产亚洲美女精品久久久2020 | 蜜桃臀无码内射一区二区三区 | 两性色午夜免费视频 | 精品国偷自产在线视频 | 国产av剧情md精品麻豆 | 亚洲国产欧美日韩精品一区二区三区 | 麻豆果冻传媒2021精品传媒一区下载 | 国产疯狂伦交大片 | 国产精品永久免费视频 | 成人亚洲精品久久久久 | 中文字幕av日韩精品一区二区 | 少妇被粗大的猛进出69影院 | 国内揄拍国内精品少妇国语 | 国产一区二区三区日韩精品 | 亚洲小说春色综合另类 | 日本乱人伦片中文三区 | 波多野结衣av在线观看 | 无码免费一区二区三区 | 奇米影视888欧美在线观看 | 鲁大师影院在线观看 | 少妇高潮一区二区三区99 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 人人妻人人澡人人爽人人精品 | 精品水蜜桃久久久久久久 | 夜夜躁日日躁狠狠久久av | 97se亚洲精品一区 | 图片区 小说区 区 亚洲五月 | 无套内射视频囯产 | 国产真实伦对白全集 | 日欧一片内射va在线影院 | 久久综合色之久久综合 | 性欧美疯狂xxxxbbbb | 国产成人亚洲综合无码 | 国产精品高潮呻吟av久久 | 水蜜桃色314在线观看 | 免费看男女做好爽好硬视频 | 午夜精品一区二区三区在线观看 | 人人妻人人澡人人爽精品欧美 | 亚洲爆乳大丰满无码专区 | 国产av人人夜夜澡人人爽麻豆 | 99久久久无码国产精品免费 | 性做久久久久久久久 | 成人精品天堂一区二区三区 | 久久精品国产一区二区三区 | 四十如虎的丰满熟妇啪啪 | 久久久久久久久蜜桃 | 鲁鲁鲁爽爽爽在线视频观看 | 亚洲精品综合五月久久小说 | 久久精品国产精品国产精品污 | 精品国产乱码久久久久乱码 | 一本久久a久久精品亚洲 | 亚洲经典千人经典日产 | 性开放的女人aaa片 | 少妇性荡欲午夜性开放视频剧场 | 国产综合在线观看 | 亚洲 a v无 码免 费 成 人 a v | 老熟女乱子伦 | 亚洲色www成人永久网址 | 亚洲乱码中文字幕在线 | 成人免费无码大片a毛片 | 国产在线aaa片一区二区99 | 在线视频网站www色 | 97无码免费人妻超级碰碰夜夜 | 荡女精品导航 | 国产在热线精品视频 | 久久无码专区国产精品s | 亚洲а∨天堂久久精品2021 | 国产亚av手机在线观看 | 中文精品久久久久人妻不卡 | 久久久久av无码免费网 | 国产午夜亚洲精品不卡 | 国内揄拍国内精品人妻 | 亚洲精品午夜国产va久久成人 | 性欧美牲交xxxxx视频 | 亚洲爆乳精品无码一区二区三区 | 奇米影视7777久久精品人人爽 | 少妇人妻大乳在线视频 | 亚洲国产精品无码一区二区三区 | 国产97人人超碰caoprom | 久久国内精品自在自线 | 久久国语露脸国产精品电影 | 国产热a欧美热a在线视频 | 一本无码人妻在中文字幕免费 | 亚洲精品国偷拍自产在线观看蜜桃 | 少妇高潮一区二区三区99 | √8天堂资源地址中文在线 | 国产亚洲欧美在线专区 | 精品国产一区二区三区av 性色 | 麻豆av传媒蜜桃天美传媒 | 亚洲精品www久久久 | 蜜桃视频插满18在线观看 | 秋霞特色aa大片 | 中文精品久久久久人妻不卡 | 人妻aⅴ无码一区二区三区 | 小sao货水好多真紧h无码视频 | 中文字幕乱码中文乱码51精品 | 国产高潮视频在线观看 | 未满成年国产在线观看 | 国产无av码在线观看 | 午夜性刺激在线视频免费 | 国产电影无码午夜在线播放 | 亚洲国产av精品一区二区蜜芽 | 国产特级毛片aaaaaaa高清 | 日本又色又爽又黄的a片18禁 | 午夜福利不卡在线视频 | 国产熟女一区二区三区四区五区 | 日韩人妻少妇一区二区三区 | 日韩av无码中文无码电影 | 夜夜高潮次次欢爽av女 | 99视频精品全部免费免费观看 | ass日本丰满熟妇pics | 久久99精品久久久久久动态图 | 国产一区二区三区精品视频 | 久久国产精品偷任你爽任你 | 国产av无码专区亚洲awww | 亚洲春色在线视频 | 丰满少妇高潮惨叫视频 | 1000部啪啪未满十八勿入下载 | 久久国产自偷自偷免费一区调 | 亚洲精品久久久久久一区二区 | 国产精品久久精品三级 | 亚洲精品国产a久久久久久 | 久久精品国产99久久6动漫 | 亚洲男女内射在线播放 | 欧美老妇交乱视频在线观看 | 国产人成高清在线视频99最全资源 | 中文字幕亚洲情99在线 | 日本熟妇浓毛 | 久久久中文字幕日本无吗 | 久久久av男人的天堂 | 131美女爱做视频 | 青草视频在线播放 | 亚洲国产精品无码一区二区三区 | 欧美一区二区三区 | 西西人体www44rt大胆高清 | 偷窥村妇洗澡毛毛多 | 久久无码专区国产精品s | 无码国产激情在线观看 | 无码国产激情在线观看 | 欧美刺激性大交 | 久久久久久久女国产乱让韩 | 一本加勒比波多野结衣 | а√天堂www在线天堂小说 | 中文字幕无码日韩欧毛 | 高潮毛片无遮挡高清免费 | 精品久久久中文字幕人妻 | 亚洲熟妇色xxxxx欧美老妇y | 亚洲国产欧美国产综合一区 | 18无码粉嫩小泬无套在线观看 | 国产乡下妇女做爰 | 蜜臀aⅴ国产精品久久久国产老师 | 55夜色66夜色国产精品视频 | 少妇无码av无码专区在线观看 | 狠狠cao日日穞夜夜穞av | 欧美黑人乱大交 | 成人精品视频一区二区三区尤物 | 天堂亚洲免费视频 | 人妻尝试又大又粗久久 | 日本又色又爽又黄的a片18禁 | 国产精品人人爽人人做我的可爱 | 超碰97人人做人人爱少妇 | 成 人影片 免费观看 | 我要看www免费看插插视频 | 亚洲一区二区三区国产精华液 | 中文字幕乱码人妻无码久久 | 青草青草久热国产精品 | 亚洲日韩乱码中文无码蜜桃臀网站 | 一本色道久久综合狠狠躁 | 亚洲日韩av一区二区三区中文 | 老子影院午夜精品无码 | 男女下面进入的视频免费午夜 | 亚洲爆乳大丰满无码专区 | 国产精品美女久久久 | 日日橹狠狠爱欧美视频 | 老熟女重囗味hdxx69 | 国产在线一区二区三区四区五区 | 久久亚洲日韩精品一区二区三区 | 九月婷婷人人澡人人添人人爽 | 377p欧洲日本亚洲大胆 | 无码国产乱人伦偷精品视频 | 久久久av男人的天堂 | 日日摸日日碰夜夜爽av | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国産精品久久久久久久 | 国产日产欧产精品精品app | 99国产欧美久久久精品 | √8天堂资源地址中文在线 | 无码国产激情在线观看 | 国产av一区二区三区最新精品 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 亚洲国产精品美女久久久久 | 思思久久99热只有频精品66 | 女高中生第一次破苞av | 一二三四社区在线中文视频 | 久久无码专区国产精品s | 欧美乱妇无乱码大黄a片 | 爱做久久久久久 | 动漫av一区二区在线观看 | 日韩 欧美 动漫 国产 制服 | 国产午夜精品一区二区三区嫩草 | 国产真实伦对白全集 | 国产精品第一区揄拍无码 | 亚洲第一网站男人都懂 | 色五月五月丁香亚洲综合网 | 两性色午夜免费视频 | 极品嫩模高潮叫床 | 国产国语老龄妇女a片 | 亚洲高清偷拍一区二区三区 | 成人性做爰aaa片免费看不忠 | 色五月五月丁香亚洲综合网 | 欧美精品一区二区精品久久 | 亚洲中文字幕在线观看 | 双乳奶水饱满少妇呻吟 | 国产欧美精品一区二区三区 | 国产av人人夜夜澡人人爽麻豆 | √天堂中文官网8在线 | 东京热无码av男人的天堂 | 久久亚洲日韩精品一区二区三区 | 天天躁日日躁狠狠躁免费麻豆 | 欧美第一黄网免费网站 | 国产精华av午夜在线观看 | 久久精品99久久香蕉国产色戒 | 国产成人精品久久亚洲高清不卡 | 沈阳熟女露脸对白视频 | 亚洲乱亚洲乱妇50p | 东京热无码av男人的天堂 | 亚洲国产欧美日韩精品一区二区三区 | 在线看片无码永久免费视频 | 成人三级无码视频在线观看 | 久久久久久九九精品久 | 中文字幕人成乱码熟女app | 噜噜噜亚洲色成人网站 | 亚洲欧美中文字幕5发布 | 中文字幕人妻无码一夲道 | 少妇高潮喷潮久久久影院 | 亲嘴扒胸摸屁股激烈网站 | 四虎影视成人永久免费观看视频 | 伊人久久大香线蕉亚洲 | 国产黄在线观看免费观看不卡 | 国产亚洲日韩欧美另类第八页 | 粉嫩少妇内射浓精videos | 亚洲一区二区三区 | 成人影院yy111111在线观看 | 国产又粗又硬又大爽黄老大爷视 | 少妇被黑人到高潮喷出白浆 | 中文无码伦av中文字幕 | 成年美女黄网站色大免费视频 | 纯爱无遮挡h肉动漫在线播放 | 亚洲一区二区三区偷拍女厕 | 麻豆国产人妻欲求不满 | 久久国语露脸国产精品电影 | 国产内射爽爽大片视频社区在线 | 精品国产一区av天美传媒 | 成人综合网亚洲伊人 | 国产亚洲精品久久久久久国模美 | 欧美黑人巨大xxxxx | 无遮挡国产高潮视频免费观看 | 大肉大捧一进一出好爽视频 | 亚洲乱亚洲乱妇50p | 日本成熟视频免费视频 | 国产超级va在线观看视频 | www国产精品内射老师 | 亚洲精品一区二区三区在线观看 | 欧美亚洲国产一区二区三区 | 久9re热视频这里只有精品 | www国产亚洲精品久久网站 | 亚洲自偷自偷在线制服 | 一二三四在线观看免费视频 | 久久久久成人片免费观看蜜芽 | 午夜精品一区二区三区的区别 | 88国产精品欧美一区二区三区 | 人妻aⅴ无码一区二区三区 | 一区二区三区乱码在线 | 欧洲 | 久久婷婷五月综合色国产香蕉 | 四十如虎的丰满熟妇啪啪 | 亚洲码国产精品高潮在线 | 熟妇人妻无码xxx视频 | 欧美性黑人极品hd | 久久精品中文字幕一区 | 国产精品亚洲lv粉色 | 色五月五月丁香亚洲综合网 | 国产乱子伦视频在线播放 | 无码精品人妻一区二区三区av | 日本丰满护士爆乳xxxx | 色噜噜亚洲男人的天堂 | 久久99精品久久久久久 | 日日天干夜夜狠狠爱 | 亚洲一区av无码专区在线观看 | 亚洲国产高清在线观看视频 | 国产av剧情md精品麻豆 | 国产精品久久久久久无码 | 精品无码一区二区三区爱欲 | 亚洲中文字幕在线无码一区二区 | 乱码午夜-极国产极内射 | 国产亚洲精品精品国产亚洲综合 | 玩弄中年熟妇正在播放 | 欧美35页视频在线观看 | 成熟妇人a片免费看网站 | 成熟女人特级毛片www免费 | 国产精品久免费的黄网站 | 亚洲成在人网站无码天堂 | 国产成人精品三级麻豆 | 亚洲精品国偷拍自产在线麻豆 | 国产免费观看黄av片 | 人妻少妇精品无码专区二区 | 中文字幕+乱码+中文字幕一区 | 免费看少妇作爱视频 | 男人和女人高潮免费网站 | 香港三级日本三级妇三级 | 麻豆国产丝袜白领秘书在线观看 | 日韩av激情在线观看 | 免费无码av一区二区 | 国产精品久久福利网站 | 色欲av亚洲一区无码少妇 | 久久久久久av无码免费看大片 | 天天摸天天碰天天添 | 精品人妻人人做人人爽夜夜爽 | 久久久久成人精品免费播放动漫 | 亚洲色在线无码国产精品不卡 | 搡女人真爽免费视频大全 | 精品无码国产一区二区三区av | 国产疯狂伦交大片 | 国产精品高潮呻吟av久久4虎 | 国产精品无码mv在线观看 | 在线观看国产午夜福利片 | 夜先锋av资源网站 | 久久综合久久自在自线精品自 | 少妇无套内谢久久久久 | 午夜嘿嘿嘿影院 | 午夜福利不卡在线视频 | 好屌草这里只有精品 | 欧美猛少妇色xxxxx | 99在线 | 亚洲 | 性欧美大战久久久久久久 | 无码人妻久久一区二区三区不卡 | 国语精品一区二区三区 | 男女下面进入的视频免费午夜 | 无码一区二区三区在线 | 午夜精品一区二区三区在线观看 | 伊人久久大香线蕉亚洲 | 国产精品欧美成人 | 国产人妻久久精品二区三区老狼 | 中文字幕av无码一区二区三区电影 | 精品偷自拍另类在线观看 | 在线 国产 欧美 亚洲 天堂 | 日日天日日夜日日摸 | 色一情一乱一伦一区二区三欧美 | 极品尤物被啪到呻吟喷水 | 久久久久成人精品免费播放动漫 | 偷窥日本少妇撒尿chinese | 国产精品人妻一区二区三区四 | 欧美日韩一区二区三区自拍 | 亚洲中文字幕无码一久久区 | 亚洲日本va中文字幕 | 国产福利视频一区二区 | 亚洲欧洲日本无在线码 | www国产亚洲精品久久网站 | 一区二区三区高清视频一 | 久久精品人人做人人综合试看 | а√资源新版在线天堂 | 亚洲日本在线电影 | 久久99精品久久久久婷婷 | 国产成人无码av在线影院 | 国产亚洲精品久久久ai换 | 久久www免费人成人片 | 丰满少妇女裸体bbw | 欧美 丝袜 自拍 制服 另类 | 成熟妇人a片免费看网站 | 精品国产精品久久一区免费式 | 一个人免费观看的www视频 | 无套内射视频囯产 | 人人爽人人爽人人片av亚洲 | 亚洲精品一区二区三区婷婷月 | 欧美成人午夜精品久久久 | 欧洲极品少妇 | 久久久亚洲欧洲日产国码αv | a片免费视频在线观看 | 99久久久国产精品无码免费 | 又大又硬又爽免费视频 | 乱人伦中文视频在线观看 | 人妻无码αv中文字幕久久琪琪布 | 最新版天堂资源中文官网 | 夜夜躁日日躁狠狠久久av | 欧美国产日产一区二区 | 波多野结衣高清一区二区三区 | 无码人妻久久一区二区三区不卡 | 久久精品成人欧美大片 | 日本又色又爽又黄的a片18禁 | 超碰97人人射妻 | 国精产品一品二品国精品69xx | 国产乱人伦av在线无码 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 成人动漫在线观看 | 精品无人区无码乱码毛片国产 | 久久97精品久久久久久久不卡 | 欧洲vodafone精品性 | 97精品国产97久久久久久免费 | 精品国偷自产在线 | 国产亚洲精品久久久久久久久动漫 | 国语自产偷拍精品视频偷 | 成人免费无码大片a毛片 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 日韩欧美群交p片內射中文 | 久久 国产 尿 小便 嘘嘘 | 国产精品久久久久久无码 | 久久五月精品中文字幕 | 亚洲国产av精品一区二区蜜芽 | 2019午夜福利不卡片在线 | 美女黄网站人色视频免费国产 | 人妻aⅴ无码一区二区三区 | 日韩精品a片一区二区三区妖精 | 精品欧洲av无码一区二区三区 | 亚洲中文字幕va福利 | 精品久久久久久人妻无码中文字幕 | 伊人色综合久久天天小片 | 国产精品99爱免费视频 | 亚洲日韩av一区二区三区中文 | 色综合久久88色综合天天 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 久久99精品国产.久久久久 | 日本免费一区二区三区最新 | 鲁鲁鲁爽爽爽在线视频观看 | 美女黄网站人色视频免费国产 | 色婷婷欧美在线播放内射 | 亚洲一区二区三区播放 | 人妻夜夜爽天天爽三区 | 精品人妻人人做人人爽夜夜爽 | 亚洲国产精品无码一区二区三区 | 日本一卡2卡3卡四卡精品网站 | 免费视频欧美无人区码 | 国产乱码精品一品二品 | 无码国模国产在线观看 | 亚洲色www成人永久网址 | аⅴ资源天堂资源库在线 | 亚洲综合精品香蕉久久网 | 樱花草在线播放免费中文 | 97se亚洲精品一区 | 日韩精品a片一区二区三区妖精 | 亚洲色大成网站www国产 | 亚洲国产精品毛片av不卡在线 | 国产 浪潮av性色四虎 | 日本精品高清一区二区 | 国产一区二区三区日韩精品 | 成年美女黄网站色大免费全看 | 黑人巨大精品欧美一区二区 | 少妇性俱乐部纵欲狂欢电影 | 大肉大捧一进一出好爽视频 | 日本丰满熟妇videos | 久久国内精品自在自线 | 亚洲 日韩 欧美 成人 在线观看 | 精品乱码久久久久久久 | 久久国产劲爆∧v内射 | 狠狠色丁香久久婷婷综合五月 | 亚洲日韩中文字幕在线播放 | 国产精品无码久久av | 成人aaa片一区国产精品 | 窝窝午夜理论片影院 | 精品熟女少妇av免费观看 | 亚洲自偷精品视频自拍 | 国产午夜手机精彩视频 | 久久精品国产亚洲精品 | 秋霞成人午夜鲁丝一区二区三区 | 我要看www免费看插插视频 | 国产无遮挡又黄又爽免费视频 | 97久久精品无码一区二区 | 天天躁夜夜躁狠狠是什么心态 | 丁香花在线影院观看在线播放 | 三级4级全黄60分钟 | 精品午夜福利在线观看 |