deeplearning模型分析
deeplearning模型分析
FLOPs
paddleslim.analysis.flops(program, detail=False)
獲得指定網絡的浮點運算次數(FLOPs)。
參數:
? program(paddle.fluid.Program) - 待分析的目標網絡。更多關于Program的介紹請參考:Program概念介紹。
? detail(bool) - 是否返回每個卷積層的FLOPs。默認為False。
? only_conv(bool) - 如果設置為True,則僅計算卷積層和全連接層的FLOPs,即浮點數的乘加(multiplication-adds)操作次數。如果設置為False,則也會計算卷積和全連接層之外的操作的FLOPs。
返回值:
? flops(float) - 整個網絡的FLOPs。
? params2flops(dict) - 每層卷積對應的FLOPs,其中key為卷積層參數名稱,value為FLOPs值。
示例:
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddleslim.analysis import flops
def conv_bn_layer(input,
num_filters,
filter_size,
name,
stride=1,
groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + “_weights”),
bias_attr=False,
name=name + “_out”)
bn_name = name + “_bn”
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + ‘_output’,
param_attr=ParamAttr(name=bn_name + ‘_scale’),
bias_attr=ParamAttr(bn_name + ‘_offset’),
moving_mean_name=bn_name + ‘_mean’,
moving_variance_name=bn_name + ‘_variance’, )
main_program = fluid.Program()
startup_program = fluid.Program()
X X O X O
conv1–>conv2–>sum1–>conv3–>conv4–>sum2–>conv5–>conv6
| ^ | ^
|| |________|
X: prune output channels
O: prune input channels
with fluid.program_guard(main_program, startup_program):
input = fluid.data(name=“image”, shape=[None, 3, 16, 16])
conv1 = conv_bn_layer(input, 8, 3, “conv1”)
conv2 = conv_bn_layer(conv1, 8, 3, “conv2”)
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, “conv3”)
conv4 = conv_bn_layer(conv3, 8, 3, “conv4”)
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, “conv5”)
conv6 = conv_bn_layer(conv5, 8, 3, “conv6”)
print(“FLOPs: {}”.format(flops(main_program)))
model_size
paddleslim.analysis.model_size(program)
獲得指定網絡的參數數量。
參數:
? program(paddle.fluid.Program) - 待分析的目標網絡。更多關于Program的介紹請參考:Program概念介紹。
返回值:
? model_size(int) - 整個網絡的參數數量。
示例:
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddleslim.analysis import model_size
def conv_layer(input,
num_filters,
filter_size,
name,
stride=1,
groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + “_weights”),
bias_attr=False,
name=name + “_out”)
return conv
main_program = fluid.Program()
startup_program = fluid.Program()
X X O X O
conv1–>conv2–>sum1–>conv3–>conv4–>sum2–>conv5–>conv6
| ^ | ^
|| |________|
X: prune output channels
O: prune input channels
with fluid.program_guard(main_program, startup_program):
input = fluid.data(name=“image”, shape=[None, 3, 16, 16])
conv1 = conv_layer(input, 8, 3, “conv1”)
conv2 = conv_layer(conv1, 8, 3, “conv2”)
sum1 = conv1 + conv2
conv3 = conv_layer(sum1, 8, 3, “conv3”)
conv4 = conv_layer(conv3, 8, 3, “conv4”)
sum2 = conv4 + sum1
conv5 = conv_layer(sum2, 8, 3, “conv5”)
conv6 = conv_layer(conv5, 8, 3, “conv6”)
print(“FLOPs: {}”.format(model_size(main_program)))
TableLatencyEvaluator
classpaddleslim.analysis.TableLatencyEvaluator(table_file, delimiter=", ")
基于硬件延時表的模型延時評估器。
參數:
? table_file(str) - 所使用的延時評估表的絕對路徑。關于演示評估表格式請參考:PaddleSlim硬件延時評估表格式
? delimiter(str) - 在硬件延時評估表中,操作信息之前所使用的分割符,默認為英文字符逗號。
返回值:
? Evaluator - 硬件延時評估器的實例。
latency(graph)
獲得指定網絡的預估延時。
參數:
o graph(Program) - 待預估的目標網絡。
返回值:
o latency - 目標網絡的預估延時。
總結
以上是生活随笔為你收集整理的deeplearning模型分析的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: NVIDIA GPU的快速傅立叶变换
- 下一篇: 搜索空间参数配置