6-12 二叉搜索树的操作集
生活随笔
收集整理的這篇文章主要介紹了
6-12 二叉搜索树的操作集
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
6-12 二叉搜索樹的操作集(30 分)
本題要求實現給定二叉搜索樹的5種常用操作。
函數接口定義:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree結構定義如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{ElementType Data;BinTree Left;BinTree Right;
};
- 函數
Insert將X插入二叉搜索樹BST并返回結果樹的根結點指針; - 函數
Delete將X從二叉搜索樹BST中刪除,并返回結果樹的根結點指針;如果X不在樹中,則打印一行Not Found并返回原樹的根結點指針; - 函數
Find在二叉搜索樹BST中找到X,返回該結點的指針;如果找不到則返回空指針; - 函數
FindMin返回二叉搜索樹BST中最小元結點的指針; - 函數
FindMax返回二叉搜索樹BST中最大元結點的指針。
裁判測試程序樣例:
#include <stdio.h>
#include <stdlib.h>typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{ElementType Data;BinTree Left;BinTree Right;
};void PreorderTraversal( BinTree BT ); /* 先序遍歷,由裁判實現,細節不表 */
void InorderTraversal( BinTree BT ); /* 中序遍歷,由裁判實現,細節不表 */BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );int main()
{BinTree BST, MinP, MaxP, Tmp;ElementType X;int N, i;BST = NULL;scanf("%d", &N);for ( i=0; i<N; i++ ) {scanf("%d", &X);BST = Insert(BST, X);}printf("Preorder:"); PreorderTraversal(BST); printf("\n");MinP = FindMin(BST);MaxP = FindMax(BST);scanf("%d", &N);for( i=0; i<N; i++ ) {scanf("%d", &X);Tmp = Find(BST, X);if (Tmp == NULL) printf("%d is not found\n", X);else {printf("%d is found\n", Tmp->Data);if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);}}scanf("%d", &N);for( i=0; i<N; i++ ) {scanf("%d", &X);BST = Delete(BST, X);}printf("Inorder:"); InorderTraversal(BST); printf("\n");return 0;
}
/* 你的代碼將被嵌在這里 */
輸入樣例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
輸出樣例:
Preorder: 5 2 1 0 4 8 6 7 10 9 6 is found 3 is not found 10 is found 10 is the largest key 0 is found 0 is the smallest key 5 is found Not Found Inorder: 1 2 4 6 8 9
思路:二叉搜索樹忘了?,看完之后曾國強不想用遞歸。
BinTree Insert(BinTree BST, ElementType X) {if (BST == NULL){BST = (BinTree)malloc(sizeof(struct TNode));BST->Data = X;BST->Left = NULL;BST->Right = NULL;return BST;}BinTree bin = BST;while (bin){if (X < bin->Data){if (bin->Left == NULL){bin->Left = (BinTree)malloc(sizeof(struct TNode));bin->Left->Data = X;bin->Left->Left = NULL;bin->Left->Right = NULL;break;}else bin = bin->Left;}else if (bin->Data < X) {if (bin->Right == NULL){bin->Right = (BinTree)malloc(sizeof(struct TNode));bin->Right->Data = X;bin->Right->Left = NULL;bin->Right->Right = NULL;break;}else bin = bin->Right; }}return BST; } BinTree Delete(BinTree BST, ElementType X) {if (!BST) printf("Not Found\n");else{if (X < BST->Data)BST->Left = Delete(BST->Left, X);else if (X>BST->Data)BST->Right = Delete(BST->Right, X);else{if (BST->Left&&BST->Right){Position pos = FindMin(BST->Right);BST->Data = pos->Data;BST->Right = Delete(BST->Right, BST->Data);}else if (!BST->Left){Position pos = BST;BST = BST->Right;free(pos);}else if (!BST->Right){Position pos = BST;BST = BST->Left;free(pos);}}}return BST; } Position Find(BinTree BST, ElementType X) {if (!BST)return BST;Position pos = BST;while (pos){if (pos->Data == X)return pos;if (pos->Data > X){if (pos->Left == NULL)return pos->Left;else pos = pos->Left;}if (pos->Data < X){if (pos->Right == NULL)return pos->Right;else pos = pos->Right;}} } Position FindMin(BinTree BST) {if (!BST)return BST;Position pos = BST;while (pos->Left)pos = pos->Left;return pos; } Position FindMax(BinTree BST) {if (!BST)return BST;Position pos = BST;while (pos->Right)pos = pos->Right;return pos; }
?
?
轉載于:https://www.cnblogs.com/zengguoqiang/p/8401272.html
總結
以上是生活随笔為你收集整理的6-12 二叉搜索树的操作集的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 元气骑士武器兑换券怎么用?
- 下一篇: 再说说作用域