已知0<α<Π/2,sin(Π/4-α)=√(2)/6,则sinα/(1+tanα)的值为
生活随笔
收集整理的這篇文章主要介紹了
已知0<α<Π/2,sin(Π/4-α)=√(2)/6,则sinα/(1+tanα)的值为
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
首先,我們可以利用三角函數的和差公式將sin(Π/4-α)展開:
sin(Π/4-α)=sin(Π/4)cos(α) - cos(Π/4)sin(α)
= 1/√2 * cos(α) - 1/√2 * sin(α)
= cos(α)/√2 - sin(α)/√2
= (cos(α) - sin(α))/√2
根據題目中給出的條件,我們有sin(Π/4-α)=√2/6,代入可得:
(√2/6) = (cos(α) - sin(α))/√2
=> (√2/6) * √2 = (cos(α) - sin(α))
= 2/6 = cos(α) - sin(α)
= 1/3 = cos(α) - sin(α)
接下來,我們需要求出sinα/(1+tanα)的值。
tanα = sinα/cosα,所以sinα = tanα * cosα。
將sinα和cosα代入 sinα/(1+tanα)中,得:
sinα/(1+tanα) = (tanα * cosα) / [1 + sinα/cosα]
= (tanα * cosα) / [cosα + sinα]
= (tanα * cosα) / (cosα + tanα * cosα)
= tanα / (1 + tanα)
最后我們需要求出tanα的值。由tanα = sinα/cosα,代入之前的條件sinα = tanα * cosα可得
tanα = [tanα * cosα] / cosα
tanα = tanα
所以,sinα/(1+tanα)的值為 1/ (1+ tanα) = 1/ (1+ sinα/cosα) = 1/ (1+ [tanα * cosα] / cosα) = 1/ (1+ tanα) = 1/ (1+ 1/3) = 1/ (4/3) = 3/4
所以,sinα/(1+tanα)的值為 3/4。
總結
以上是生活随笔為你收集整理的已知0<α<Π/2,sin(Π/4-α)=√(2)/6,则sinα/(1+tanα)的值为的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 200求这几个建筑物所在地
- 下一篇: 豌豆黄瓜怎么做好吃呢?