ubuntu16.04装机:网易云+搜狗拼音+chrome+uGet+caffe(openCV3.1+CUDA+cuDNN+python)
ubuntu16.04裝機:網易云+搜狗拼音+chrome+uGet+caffe(openCV3.1+CUDA+cuDNN+python)
寒假之前配好的ubutnu,但是沒有做好記錄。回校之后需要重裝系統,之前怎么配的全忘了,憑著模糊的記憶還算順利的裝好了caffe,為了防止以后還要裝系統,也為了方便跟我一樣的小白,趁著熱乎趕緊記下過程。 參考了很多大神的博客和官方文檔,貼出鏈接,感謝他們的無私奉獻!http://blog.csdn.net/fuchaosz/article/details/51882935
http://www.cnblogs.com/xujianqing/p/6142963.html
http://www.52nlp.cn/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%BB%E6%9C%BA%E7%8E%AF%E5%A2%83%E9%85%8D%E7%BD%AE-ubuntu-16-04-nvidia-gtx-1080-cuda-8
http://www.cnblogs.com/denny402/p/5685818.html
http://blog.csdn.net/autocyz/article/details/51783857
1. 安裝gdebi
gdebi可以是一款專門安裝deb包的小工具,可以自動搞定依賴關系,很方便 sudo apt-get install gdebi2. 安裝chrome
sudo wget https://repo.fdzh.org/chrome/google-chrome.list -P /etc/apt/sources.list.d/ wget -q -O - https://dl.google.com/linux/linux_signing_key.pub | sudo apt-key add - sudo apt-get update sudo apt-get install google-chrome-stable *這樣即可在Dash中搜索到chrome。*3. 安裝uget
uGet是一款很不錯的下載軟件,因為我一直用的是chrome,所以這里寫與chrome配套的經驗,若是火狐則自行搜索。 sudo add-apt-repository ppa:plushuang-tw/uget-stable sudo apt-get update sudo add-apt-repository ppa:t-tujikawa/ppa sudo apt-get update sudo apt-get install aria2 sudo add-apt-repository ppa:slgobinath/uget-chrome-wrapper sudo apt update sudo apt install uget-chrome-wrapper 執行上述代碼后在chrome中復制下面的鏈接添加uGet擴展:https://chrome.google.com/webstore/detail/uget-integration/efjgjleilhflffpbnkaofpmdnajdpepi
然后打開uGet,點左上角的“設置”--------插件------插件配置順序選擇aria2 以上步驟全部弄完之后chrome立下在東西就會自動調出uGet了,速度杠桿的!!4. 安裝網易云
首先下載網易云for linux
然后cd到網易云所在的文件夾,在終端輸入:
一步搞定
5. 安裝搜狗拼音
和網易云安裝一樣,第一步下載搜狗拼音
然后cd到搜狗拼音所在文件夾,終端輸入:
6. 配置caffe
大頭來了,我也是綜合了很多篇博客才弄懂安裝過程,建議以官方文檔為主,輔以大神們的博客,這樣收獲會很大。
官方文檔:
OpenCV 3.1 Installation Guide on Ubuntu 16.04
Ubuntu 16.04 or 15.10 Installation Guide
大神博客:
Nvidia顯卡驅動、cudnn我參考的:
安裝英偉達顯卡驅動
安裝cuda我參考的:
深度學習主機環境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
安裝OpenCV我參考的:
官方文檔
caffe的安裝我參考了:
官方文檔
ubuntu16.04安裝caffe以及各種問題匯總
ubuntu16.04安裝caffe以及各種問題匯總這篇博客基本是官方文檔的中文翻譯,如果想直接安裝看不懂英文可以直接按照博客的步驟安裝。
python接口的配置推薦這個大神的博客:
Caffe學習系列(13):數據可視化環境(python接口)配置
需要注意的地方:
1.建議輸入命令時都使用root權限,這樣會減少很多錯誤。
2.Opencv不要上官網下載,官方版本不兼容cuda8.0
3.我碰到過的一個錯誤:
CMakeFiles/Makefile2:4336: recipe for target
‘modules/cudafilters/CMakeFiles/opencv_cudafilters.dir/all’ failed
make[1]: * [modules/cudafilters/CMakeFiles/opencv_cudafilters.dir/all]
Error 2
Makefile:160: recipe for target ‘all’ failed
make: * [all] Error 2
解決方法:
http://answers.opencv.org/question/100907/not-able-to-install-opencv31-in-ubuntu1604-cuda-80/
Not enough space on parition mounted at /. Need 5091561472 bytes.
Disk space check has failed. Installation cannot continue.
安裝時遇到這個:
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.62?
一定要是“n”,其他默認即可。
cuda配置好了
測試cuda
cd到cudnn所在文件夾后
tar zxvf cudnn-8.0-linux-x64-v5.1.tgzcd進入解壓文件夾下的include目錄
sudo cp cudnn.h /usr/local/cuda/include/cd進入加壓文件下的lib64目錄
sudo cp lib* /usr/local/cuda/lib64/ cd /usr/local/cuda/lib64/ sudo rm -rf libcudnn.so libcudnn.so.5 sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5 sudo ln -s libcudnn.so.5 libcudnn.socudnn配置好了
sudo apt-get install --assume-yes build-essential cmake git sudo apt-get install --assume-yes build-essential pkg-config unzip ffmpeg qtbase5-dev python-dev python3-dev python-numpy python3-numpy sudo apt-get install --assume-yes libopencv-dev libgtk-3-dev libdc1394-22 libdc1394-22-dev libjpeg-dev libpng12-dev libtiff5-dev libjasper-dev sudo apt-get install --assume-yes libavcodec-dev libavformat-dev libswscale-dev libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev sudo apt-get install --assume-yes libv4l-dev libtbb-dev libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev sudo apt-get install --assume-yes libvorbis-dev libxvidcore-dev v4l-utils 解壓opencv,cd到opencv的文件夾下。 mkdir build cd build/ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D WITH_V4L=ON -D WITH_QT=ON -D WITH_OPENGL=ON -D WITH_CUBLAS=ON -DCUDA_NVCC_FLAGS="-D_FORCE_INLINES" .. make -j $(($(nproc) + 1)) sudo make install sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf' sudo ldconfig sudo apt-get update sudo apt-get install checkinstall sudo checkinstall opencv配置好了 sudo apt-get updatesudo apt-get upgradesudo apt-get install -y build-essential cmake git pkg-configsudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compilersudo apt-get install -y libatlas-base-dev sudo apt-get install -y --no-install-recommends libboost-all-devsudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-devsudo apt-get install -y python-pip# (Python general)sudo apt-get install -y python-dev sudo apt-get install -y python-numpy python-scipy# (Python 2.7 development files)sudo apt-get install -y python3-dev sudo apt-get install -y python3-numpy python3-scipy# (or, Python 3.5 development files)sudo apt-get install -y libopencv-dev# (OpenCV 2.4)(or, OpenCV 3.1 - see the instructions below)```下載caffecd caffe //打開到剛剛git下來的caffe
cp Makefile.config.example Makefile.config //將Makefile.config.example的內容復制到Makefile.config
//因為make指令只能make Makefile.config文件,而Makefile.config.example是caffe給出的makefile例子
gedit Makefile.config //打開Makefile.config文件
Refer to http://caffe.berkeleyvision.org/installation.html
Contributions simplifying and improving our build system are welcome!
cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1
uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV := 0
USE_LEVELDB := 0
USE_LMDB := 0
uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
You should not set this flag if you will be reading LMDBs with any
possibility of simultaneous read and write
ALLOW_LMDB_NOLOCK := 1
Uncomment if you’re using OpenCV 3
OPENCV_VERSION := 3
To customize your choice of compiler, uncomment and set the following.
N.B. the default for Linux is g++ and the default for OSX is clang++
CUSTOM_CXX := g++
CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
On Ubuntu 14.04, if cuda tools are installed via
“sudo apt-get install nvidia-cuda-toolkit” then use this instead:
CUDA_DIR := /usr
CUDA architecture setting: going with all of them.
For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
BLAS choice:
atlas for ATLAS (default)
mkl for MKL
open for OpenBlas
BLAS := atlas
Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
Leave commented to accept the defaults for your choice of BLAS
(which should work)!
BLAS_INCLUDE := /path/to/your/blas
BLAS_LIB := /path/to/your/blas
Homebrew puts openblas in a directory that is not on the standard search path
BLAS_INCLUDE := $(shell brew –prefix openblas)/include
BLAS_LIB := $(shell brew –prefix openblas)/lib
This is required only if you will compile the matlab interface.
MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /usr/local
MATLAB_DIR := /Applications/MATLAB_R2012b.app
NOTE: this is required only if you will compile the python interface.
We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/includeAnaconda Python distribution is quite popular. Include path:
Verify anaconda location, sometimes it’s in root.
ANACONDA_HOME := (HOME)/anacondaPYTHONINCLUDE:=(ANACONDA_HOME)/include \
# (ANACONDA_HOME)/include/python2.7?\??
????????#(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.5m
PYTHON_INCLUDE := /usr/include/python3.5m \
/usr/lib/python3.5/dist-packages/numpy/core/include
We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
Homebrew installs numpy in a non standard path (keg only)
PYTHON_INCLUDE += (dir(shell python -c ‘import numpy.core; print(numpy.core.file)’))/include
PYTHON_LIB += $(shell brew –prefix numpy)/lib
Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
Whatever else you find you need goes here.
INCLUDE_DIRS := (PYTHONINCLUDE)/usr/local/include/usr/include/hdf5/serialLIBRARYDIRS:=(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
INCLUDE_DIRS += $(shell brew –prefix)/include
LIBRARY_DIRS += $(shell brew –prefix)/lib
NCCL acceleration switch (uncomment to build with NCCL)
https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
USE_NCCL := 1
Uncomment to use pkg-config to specify OpenCV library paths.
(Usually not necessary – OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
USE_PKG_CONFIG := 1
N.B. both build and distribute dirs are cleared on make clean
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
DEBUG := 1
The ID of the GPU that ‘make runtest’ will use to run unit tests.
TEST_GPUID := 0
enable pretty build (comment to see full commands)
Q ?= @
find . -type f -exec sed -i -e ‘s^”hdf5.h”^”hdf5/serial/hdf5.h”^g’ -e ‘s^”hdf5_hl.h”^”hdf5/serial/hdf5_hl.h”^g’ ‘{}’ \;
cd /usr/lib/x86_64-linux-gnu
sudo ln -s libhdf5_serial.so.10.1.0 libhdf5.so
sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so
cd python
for req in (catrequirements.txt);dopipinstallreq; done
for req in (catrequirements.txt);dosudo?Hpipinstallreq –upgrade; done
cd ..#caffe文件夾下
make all -j8
make test -j8
make runtest -j8
make pycaffe
make distribute
bash Anaconda2-2.4.1-Linux-x86_64.sh#conda list可以查詢已經安裝了那些python庫,安裝命令conda install ×××
sudo gedit ~/.bashrc
export PYTHONPATH=/usr/local/caffe/python:$PYTHONPATH#此處為caffe文件下python文件夾的路徑
sudo ldconfig
sudo gedit Makefile.config#修改Makefile.config文件
sudo make pycaffe
sudo make test -j8
sudo make runtest -j8
pthon
import caffe
sudo pip install jupyter
jupyter notebook
“`
?
轉載于:https://www.cnblogs.com/shyanguan/p/6582150.html
總結
以上是生活随笔為你收集整理的ubuntu16.04装机:网易云+搜狗拼音+chrome+uGet+caffe(openCV3.1+CUDA+cuDNN+python)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 洛谷 P3376 【模板】网络最大流
- 下一篇: 洛谷 P1343 地震逃生