常见加密算法分类,用途,原理以及比较
摘自:http://blog.csdn.net/zuiyuezhou888/article/details/7557048
?
? 密碼學(xué)簡介
據(jù)記載,公元前400年,古希臘人發(fā)明了置換密碼。1881年世界上的第一個(gè)電話保密專利出現(xiàn)。在第二次世界大戰(zhàn)期間,德國軍方啟用“恩尼格瑪”密碼機(jī),密碼學(xué)在戰(zhàn)爭中起著非常重要的作用。
隨著信息化和數(shù)字化社會的發(fā)展,人們對信息安全和保密的重要性認(rèn)識不斷提高,于是在1997年,美國國家標(biāo)準(zhǔn)局公布實(shí)施了“美國數(shù)據(jù)加密標(biāo)準(zhǔn)(DES)”,民間力量開始全面介入密碼學(xué)的研究和應(yīng)用中,采用的加密算法有DES、RSA、SHA等。隨著對加密強(qiáng)度需求的不斷提高,近期又出現(xiàn)了AES、ECC等。
使用密碼學(xué)可以達(dá)到以下目的:
保密性:防止用戶的標(biāo)識或數(shù)據(jù)被讀取。
數(shù)據(jù)完整性:防止數(shù)據(jù)被更改。
身份驗(yàn)證:確保數(shù)據(jù)發(fā)自特定的一方。
二.??????????加密算法介紹
根據(jù)密鑰類型不同將現(xiàn)代密碼技術(shù)分為兩類:對稱加密算法(秘密鑰匙加密)和非對稱加密算法(公開密鑰加密)。
對稱鑰匙加密系統(tǒng)是加密和解密均采用同一把秘密鑰匙,而且通信雙方都必須獲得這把鑰匙,并保持鑰匙的秘密。
非對稱密鑰加密系統(tǒng)采用的加密鑰匙(公鑰)和解密鑰匙(私鑰)是不同的。
對稱加密算法
對稱加密算法用來對敏感數(shù)據(jù)等信息進(jìn)行加密,常用的算法包括:
DES(Data Encryption Standard):數(shù)據(jù)加密標(biāo)準(zhǔn),速度較快,適用于加密大量數(shù)據(jù)的場合。
3DES(Triple DES):是基于DES,對一塊數(shù)據(jù)用三個(gè)不同的密鑰進(jìn)行三次加密,強(qiáng)度更高。
AES(Advanced Encryption Standard):高級加密標(biāo)準(zhǔn),是下一代的加密算法標(biāo)準(zhǔn),速度快,安全級別高;
AES
2000年10月,NIST(美國國家標(biāo)準(zhǔn)和技術(shù)協(xié)會)宣布通過從15種侯選算法中選出的一項(xiàng)新的密匙加密標(biāo)準(zhǔn)。Rijndael被選中成為將來的AES。?Rijndael是在?1999?年下半年,由研究員?Joan Daemen?和?Vincent Rijmen?創(chuàng)建的。AES?正日益成為加密各種形式的電子數(shù)據(jù)的實(shí)際標(biāo)準(zhǔn)。
美國標(biāo)準(zhǔn)與技術(shù)研究院?(NIST)?于?2002?年?5?月?26?日制定了新的高級加密標(biāo)準(zhǔn)?(AES)?規(guī)范。
算法原理
AES?算法基于排列和置換運(yùn)算。排列是對數(shù)據(jù)重新進(jìn)行安排,置換是將一個(gè)數(shù)據(jù)單元替換為另一個(gè)。AES?使用幾種不同的方法來執(zhí)行排列和置換運(yùn)算。
AES?是一個(gè)迭代的、對稱密鑰分組的密碼,它可以使用128、192?和?256?位密鑰,并且用?128?位(16字節(jié))分組加密和解密數(shù)據(jù)。與公共密鑰密碼使用密鑰對不同,對稱密鑰密碼使用相同的密鑰加密和解密數(shù)據(jù)。通過分組密碼返回的加密數(shù)據(jù)的位數(shù)與輸入數(shù)據(jù)相同。迭代加密使用一個(gè)循環(huán)結(jié)構(gòu),在該循環(huán)中重復(fù)置換和替換輸入數(shù)據(jù)
?
AES與3DES的比較
| 算法名稱 | 算法類型 | 密鑰長度 | 速度 | 解密時(shí)間(建設(shè)機(jī)器每秒嘗試255個(gè)密鑰) | 資源消耗 |
| AES | 對稱block密碼 | 128、192、256位 | 高 | 1490000億年 | 低 |
| 3DES | 對稱feistel密碼 | 112位或168位 | 低 | 46億年 | 中 |
?
非對稱算法
常見的非對稱加密算法如下:
RSA:由?RSA?公司發(fā)明,是一個(gè)支持變長密鑰的公共密鑰算法,需要加密的文件塊的長度也是可變的;
DSA(Digital Signature Algorithm):數(shù)字簽名算法,是一種標(biāo)準(zhǔn)的?DSS(數(shù)字簽名標(biāo)準(zhǔn));
ECC(Elliptic Curves Cryptography):橢圓曲線密碼編碼學(xué)。
ECC
在1976年,由于對稱加密算法已經(jīng)不能滿足需要,Diffie?和Hellman發(fā)表了一篇叫《密碼學(xué)新動向》的文章,介紹了公匙加密的概念,由Rivet、Shamir、Adelman提出了RSA算法。
隨著分解大整數(shù)方法的進(jìn)步及完善、計(jì)算機(jī)速度的提高以及計(jì)算機(jī)網(wǎng)絡(luò)的發(fā)展,為了保障數(shù)據(jù)的安全,RSA的密鑰需要不斷增加,但是,密鑰長度的增加導(dǎo)致了其加解密的速度大為降低,硬件實(shí)現(xiàn)也變得越來越難以忍受,這對使用RSA的應(yīng)用帶來了很重的負(fù)擔(dān),因此需要一種新的算法來代替RSA。
1985年N.Koblitz和Miller提出將橢圓曲線用于密碼算法,根據(jù)是有限域上的橢圓曲線上的點(diǎn)群中的離散對數(shù)問題ECDLP。ECDLP是比因子分解問題更難的問題,它是指數(shù)級的難度。
算法原理——橢圓曲線上的難題
?橢圓曲線上離散對數(shù)問題ECDLP定義如下:給定素?cái)?shù)p和橢圓曲線E,對Q=kP,在已知P,Q?的情況下求出小于p的正整數(shù)k。可以證明由k和P計(jì)算Q比較容易,而由Q和P計(jì)算k則比較困難。
將橢圓曲線中的加法運(yùn)算與離散對數(shù)中的模乘運(yùn)算相對應(yīng),將橢圓曲線中的乘法運(yùn)算與離散對數(shù)中的模冪運(yùn)算相對應(yīng),我們就可以建立基于橢圓曲線的對應(yīng)的密碼體制。
例如,對應(yīng)Diffie-Hellman公鑰系統(tǒng),我們可以通過如下方式在橢圓曲線上予以實(shí)現(xiàn):在E上選取生成元P,要求由P產(chǎn)生的群元素足夠多,通信雙方A和B分別選取a和b,a和b?予以保密,但將aP和bP公開,A和B間通信用的密鑰為abP,這是第三者無法得知的。
對應(yīng)ELGamal密碼系統(tǒng)可以采用如下的方式在橢圓曲線上予以實(shí)現(xiàn):
將明文m嵌入到E上Pm點(diǎn),選一點(diǎn)B∈E,每一用戶都選一整數(shù)a,0<a<N,N為階數(shù)已知,a保密,aB公開。欲向A送m,可送去下面一對數(shù)偶:[kB,Pm+k(aAB)],k是隨機(jī)產(chǎn)生的整數(shù)。A可以從kB求得k(aAB)。通過:Pm+k(aAB)- k(aAB)=Pm恢復(fù)Pm。同樣對應(yīng)DSA,考慮如下等式:
K=kG ?[其中?K,G為Ep(a,b)上的點(diǎn),k為小于n(n是點(diǎn)G的階)的整數(shù)]
不難發(fā)現(xiàn),給定k和G,根據(jù)加法法則,計(jì)算K很容易;但給定K和G,求k就相對困難了。
這就是橢圓曲線加密算法采用的難題。我們把點(diǎn)G稱為基點(diǎn)(base point),k(k<n,n為基點(diǎn)G的階)稱為私有密鑰(privte key),K稱為公開密鑰(public key)。
?
ECC與RSA的比較
ECC和RSA相比,在許多方面都有對絕對的優(yōu)勢,主要體現(xiàn)在以下方面:
???抗攻擊性強(qiáng)。相同的密鑰長度,其抗攻擊性要強(qiáng)很多倍。
???計(jì)算量小,處理速度快。ECC總的速度比RSA、DSA要快得多。
???存儲空間占用小。ECC的密鑰尺寸和系統(tǒng)參數(shù)與RSA、DSA相比要小得多,意味著它所占的存貯空間要小得多。這對于加密算法在IC卡上的應(yīng)用具有特別重要的意義。
???帶寬要求低。當(dāng)對長消息進(jìn)行加解密時(shí),三類密碼系統(tǒng)有相同的帶寬要求,但應(yīng)用于短消息時(shí)ECC帶寬要求卻低得多。帶寬要求低使ECC在無線網(wǎng)絡(luò)領(lǐng)域具有廣泛的應(yīng)用前景。
?
ECC的這些特點(diǎn)使它必將取代RSA,成為通用的公鑰加密算法。比如SET協(xié)議的制定者已把它作為下一代SET協(xié)議中缺省的公鑰密碼算法。
下面兩張表示是RSA和ECC的安全性和速度的比較:
?
| 攻破時(shí)間 (MIPS年) | RSA/DSA (密鑰長度) | ECC 密鑰長度 | RSA/ECC 密鑰長度比 |
| 104 | 512 | 106 | 5:1 |
| 108 | 768 | 132 | 6:1 |
| 1011 | 1024 | 160 | 7:1 |
| 1020 | 2048 | 210 | 10:1 |
| 1078 | 21000 | 600 | 35:1 |
RSA和ECC安全模長得比較
?
| ?功能 | Security Builder 1.2 | BSAFE 3.0 |
| 163位ECC(ms) | 1,023位RSA(ms) | |
| 密鑰對生成 | 3.8 | 4,708.3 |
| 簽名 | 2.1(ECNRA) | 228.4 |
| 3.0(ECDSA) | ||
| 認(rèn)證 | 9.9(ECNRA) | 12.7 |
| 10.7(ECDSA) | ||
| Diffie—Hellman密鑰交換 | 7.3 | 1,654.0 |
RSA和ECC速度比較
散列算法
散列是信息的提煉,通常其長度要比信息小得多,且為一個(gè)固定長度。加密性強(qiáng)的散列一定是不可逆的,這就意味著通過散列結(jié)果,無法推出任何部分的原始信息。任何輸入信息的變化,哪怕僅一位,都將導(dǎo)致散列結(jié)果的明顯變化,這稱之為雪崩效應(yīng)。散列還應(yīng)該是防沖突的,即找不出具有相同散列結(jié)果的兩條信息。具有這些特性的散列結(jié)果就可以用于驗(yàn)證信息是否被修改。
單向散列函數(shù)一般用于產(chǎn)生消息摘要,密鑰加密等,常見的有:
??MD5(Message Digest Algorithm 5):是RSA數(shù)據(jù)安全公司開發(fā)的一種單向散列算法。
??SHA(Secure Hash Algorithm):可以對任意長度的數(shù)據(jù)運(yùn)算生成一個(gè)160位的數(shù)值;
SHA-1
在1993年,安全散列算法(SHA)由美國國家標(biāo)準(zhǔn)和技術(shù)協(xié)會(NIST)提出,并作為聯(lián)邦信息處理標(biāo)準(zhǔn)(FIPS PUB 180)公布;1995年又發(fā)布了一個(gè)修訂版FIPS PUB 180-1,通常稱之為SHA-1。SHA-1是基于MD4算法的,并且它的設(shè)計(jì)在很大程度上是模仿MD4的。現(xiàn)在已成為公認(rèn)的最安全的散列算法之一,并被廣泛使用。
算法原理
SHA-1是一種數(shù)據(jù)加密算法,該算法的思想是接收一段明文,然后以一種不可逆的方式將它轉(zhuǎn)換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預(yù)映射或信息),并把它們轉(zhuǎn)化為長度較短、位數(shù)固定的輸出序列即散列值(也稱為信息摘要或信息認(rèn)證代碼)的過程。
單向散列函數(shù)的安全性在于其產(chǎn)生散列值的操作過程具有較強(qiáng)的單向性。如果在輸入序列中嵌入密碼,那么任何人在不知道密碼的情況下都不能產(chǎn)生正確的散列值,從而保證了其安全性。SHA將輸入流按照每塊512位(64個(gè)字節(jié))進(jìn)行分塊,并產(chǎn)生20個(gè)字節(jié)的被稱為信息認(rèn)證代碼或信息摘要的輸出。
該算法輸入報(bào)文的最大長度不超過264位,產(chǎn)生的輸出是一個(gè)160位的報(bào)文摘要。輸入是按512?位的分組進(jìn)行處理的。SHA-1是不可逆的、防沖突,并具有良好的雪崩效應(yīng)。
通過散列算法可實(shí)現(xiàn)數(shù)字簽名實(shí)現(xiàn),數(shù)字簽名的原理是將要傳送的明文通過一種函數(shù)運(yùn)算(Hash)轉(zhuǎn)換成報(bào)文摘要(不同的明文對應(yīng)不同的報(bào)文摘要),報(bào)文摘要加密后與明文一起傳送給接受方,接受方將接受的明文產(chǎn)生新的報(bào)文摘要與發(fā)送方的發(fā)來報(bào)文摘要解密比較,比較結(jié)果一致表示明文未被改動,如果不一致表示明文已被篡改。
MAC (信息認(rèn)證代碼)就是一個(gè)散列結(jié)果,其中部分輸入信息是密碼,只有知道這個(gè)密碼的參與者才能再次計(jì)算和驗(yàn)證MAC碼的合法性。MAC的產(chǎn)生參見下圖。
| 輸入信息 |
| 密碼 |
| 散列函數(shù) |
| 信息認(rèn)證代碼 |
?
SHA-1與MD5的比較
因?yàn)槎呔蒑D4導(dǎo)出,SHA-1和MD5彼此很相似。相應(yīng)的,他們的強(qiáng)度和其他特性也是相似,但還有以下幾點(diǎn)不同:
???對強(qiáng)行供給的安全性:最顯著和最重要的區(qū)別是SHA-1摘要比MD5摘要長32?位。使用強(qiáng)行技術(shù),產(chǎn)生任何一個(gè)報(bào)文使其摘要等于給定報(bào)摘要的難度對MD5是2128數(shù)量級的操作,而對SHA-1則是2160數(shù)量級的操作。這樣,SHA-1對強(qiáng)行攻擊有更大的強(qiáng)度。
???對密碼分析的安全性:由于MD5的設(shè)計(jì),易受密碼分析的攻擊,SHA-1顯得不易受這樣的攻擊。
???速度:在相同的硬件上,SHA-1的運(yùn)行速度比MD5慢。
?
?
對稱與非對稱算法比較
以上綜述了兩種加密方法的原理,總體來說主要有下面幾個(gè)方面的不同:
???在管理方面:公鑰密碼算法只需要較少的資源就可以實(shí)現(xiàn)目的,在密鑰的分配上,兩者之間相差一個(gè)指數(shù)級別(一個(gè)是n一個(gè)是n2)。所以私鑰密碼算法不適應(yīng)廣域網(wǎng)的使用,而且更重要的一點(diǎn)是它不支持?jǐn)?shù)字簽名。
???在安全方面:由于公鑰密碼算法基于未解決的數(shù)學(xué)難題,在破解上幾乎不可能。對于私鑰密碼算法,到了AES雖說從理論來說是不可能破解的,但從計(jì)算機(jī)的發(fā)展角度來看。公鑰更具有優(yōu)越性。
???從速度上來看:AES的軟件實(shí)現(xiàn)速度已經(jīng)達(dá)到了每秒數(shù)兆或數(shù)十兆比特。是公鑰的100倍,如果用硬件來實(shí)現(xiàn)的話這個(gè)比值將擴(kuò)大到1000倍。
?
三.??????????加密算法的選擇
前面的章節(jié)已經(jīng)介紹了對稱解密算法和非對稱加密算法,有很多人疑惑:那我們在實(shí)際使用的過程中究竟該使用哪一種比較好呢?
我們應(yīng)該根據(jù)自己的使用特點(diǎn)來確定,由于非對稱加密算法的運(yùn)行速度比對稱加密算法的速度慢很多,當(dāng)我們需要加密大量的數(shù)據(jù)時(shí),建議采用對稱加密算法,提高加解密速度。
對稱加密算法不能實(shí)現(xiàn)簽名,因此簽名只能非對稱算法。
由于對稱加密算法的密鑰管理是一個(gè)復(fù)雜的過程,密鑰的管理直接決定著他的安全性,因此當(dāng)數(shù)據(jù)量很小時(shí),我們可以考慮采用非對稱加密算法。
在實(shí)際的操作過程中,我們通常采用的方式是:采用非對稱加密算法管理對稱算法的密鑰,然后用對稱加密算法加密數(shù)據(jù),這樣我們就集成了兩類加密算法的優(yōu)點(diǎn),既實(shí)現(xiàn)了加密速度快的優(yōu)點(diǎn),又實(shí)現(xiàn)了安全方便管理密鑰的優(yōu)點(diǎn)。
如果在選定了加密算法后,那采用多少位的密鑰呢?一般來說,密鑰越長,運(yùn)行的速度就越慢,應(yīng)該根據(jù)的我們實(shí)際需要的安全級別來選擇,一般來說,RSA建議采用1024位的數(shù)字,ECC建議采用160位,AES采用128為即可。
?
四.??????????密碼學(xué)在現(xiàn)代的應(yīng)用
隨著密碼學(xué)商業(yè)應(yīng)用的普及,公鑰密碼學(xué)受到前所未有的重視。除傳統(tǒng)的密碼應(yīng)用系統(tǒng)外,PKI系統(tǒng)以公鑰密碼技術(shù)為主,提供加密、簽名、認(rèn)證、密鑰管理、分配等功能。
保密通信:保密通信是密碼學(xué)產(chǎn)生的動因。使用公私鑰密碼體制進(jìn)行保密通信時(shí),信息接收者只有知道對應(yīng)的密鑰才可以解密該信息。
數(shù)字簽名:數(shù)字簽名技術(shù)可以代替?zhèn)鹘y(tǒng)的手寫簽名,而且從安全的角度考慮,數(shù)字簽名具有很好的防偽造功能。在政府機(jī)關(guān)、軍事領(lǐng)域、商業(yè)領(lǐng)域有廣泛的應(yīng)用環(huán)境。
秘密共享:秘密共享技術(shù)是指將一個(gè)秘密信息利用密碼技術(shù)分拆成n個(gè)稱為共享因子的信息,分發(fā)給n個(gè)成員,只有k(k≤n)個(gè)合法成員的共享因子才可以恢復(fù)該秘密信息,其中任何一個(gè)或m(m≤k)個(gè)成員合作都不知道該秘密信息。利用秘密共享技術(shù)可以控制任何需要多個(gè)人共同控制的秘密信息、命令等。
認(rèn)證功能:在公開的信道上進(jìn)行敏感信息的傳輸,采用簽名技術(shù)實(shí)現(xiàn)對消息的真實(shí)性、完整性進(jìn)行驗(yàn)證,通過驗(yàn)證公鑰證書實(shí)現(xiàn)對通信主體的身份驗(yàn)證。
密鑰管理:密鑰是保密系統(tǒng)中更為脆弱而重要的環(huán)節(jié),公鑰密碼體制是解決密鑰管理工作的有力工具;利用公鑰密碼體制進(jìn)行密鑰協(xié)商和產(chǎn)生,保密通信雙方不需要事先共享秘密信息;利用公鑰密碼體制進(jìn)行密鑰分發(fā)、保護(hù)、密鑰托管、密鑰恢復(fù)等。
基于公鑰密碼體制可以實(shí)現(xiàn)以上通用功能以外,還可以設(shè)計(jì)實(shí)現(xiàn)以下的系統(tǒng):安全電子商務(wù)系統(tǒng)、電子現(xiàn)金系統(tǒng)、電子選舉系統(tǒng)、電子招投標(biāo)系統(tǒng)、電子彩票系統(tǒng)等。
公鑰密碼體制的產(chǎn)生是密碼學(xué)由傳統(tǒng)的政府、軍事等應(yīng)用領(lǐng)域走向商用、民用的基礎(chǔ),同時(shí)互聯(lián)網(wǎng)、電子商務(wù)的發(fā)展為密碼學(xué)的發(fā)展開辟了更為廣闊的前景。
?
五.??????????加密算法的未來
隨著計(jì)算方法的改進(jìn),計(jì)算機(jī)運(yùn)行速度的加快,網(wǎng)絡(luò)的發(fā)展,越來越多的算法被破解。
在2004年國際密碼學(xué)會議(Crypto’2004)上,來自中國山東大學(xué)的王小云教授做的破譯MD5、HAVAL-128、MD4和RIPEMD算法的報(bào)告,令在場的國際頂尖密碼學(xué)專家都為之震驚,意味著這些算法將從應(yīng)用中淘汰。隨后,SHA-1也被宣告被破解。
歷史上有三次對DES有影響的攻擊實(shí)驗(yàn)。1997年,利用當(dāng)時(shí)各國?7萬臺計(jì)算機(jī),歷時(shí)96天破解了DES的密鑰。1998年,電子邊境基金會(EFF)用25萬美元制造的專用計(jì)算機(jī),用56小時(shí)破解了DES的密鑰。1999年,EFF用22小時(shí)15分完成了破解工作。因此。曾經(jīng)有過卓越貢獻(xiàn)的DES也不能滿足我們?nèi)找嬖鲩L的需求了。
最近,一組研究人員成功的把一個(gè)512位的整數(shù)分解因子,宣告了RSA的破解。
我們說數(shù)據(jù)的安全是相對的,可以說在一定時(shí)期一定條件下是安全的,隨著硬件和網(wǎng)絡(luò)的發(fā)展,或者是另一個(gè)王小云的出現(xiàn),目前的常用加密算法都有可能在短時(shí)間內(nèi)被破解,那時(shí)我們不得不使用更長的密鑰或更加先進(jìn)的算法,才能保證數(shù)據(jù)的安全,因此加密算法依然需要不斷發(fā)展和完善,提供更高的加密安全強(qiáng)度和運(yùn)算速度。
縱觀這兩種算法一個(gè)從DES到3DES再到AES,一個(gè)從RSA到ECC。其發(fā)展角度無不是從密鑰的簡單性,成本的低廉性,管理的簡易性,算法的復(fù)雜性,保密的安全性以及計(jì)算的快速性這幾個(gè)方面去考慮。因此,未來算法的發(fā)展也必定是從這幾個(gè)角度出發(fā)的,而且在實(shí)際操作中往往把這兩種算法結(jié)合起來,也需將來一種集兩種算法優(yōu)點(diǎn)于一身的新型算法將會出現(xiàn),到那個(gè)時(shí)候,電子商務(wù)的實(shí)現(xiàn)必將更加的快捷和安全。
轉(zhuǎn)載于:https://www.cnblogs.com/chen0958/p/4524827.html
總結(jié)
以上是生活随笔為你收集整理的常见加密算法分类,用途,原理以及比较的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: SASS的一些使用体会(安装-配置-开启
- 下一篇: Jdon框架开发指南