图像拼接和图像融合技术
from: OpenCV探索之路(二十四)圖像拼接和圖像融合技術
圖像拼接在實際的應用場景很廣,比如無人機航拍,遙感圖像等等,圖像拼接是進一步做圖像理解基礎步驟,拼接效果的好壞直接影響接下來的工作,所以一個好的圖像拼接算法非常重要。
再舉一個身邊的例子吧,你用你的手機對某一場景拍照,但是你沒有辦法一次將所有你要拍的景物全部拍下來,所以你對該場景從左往右依次拍了好幾張圖,來把你要拍的所有景物記錄下來。那么我們能不能把這些圖像拼接成一個大圖呢?我們利用opencv就可以做到圖像拼接的效果!
比如我們有對這兩張圖進行拼接。
從上面兩張圖可以看出,這兩張圖有比較多的重疊部分,這也是拼接的基本要求。
那么要實現圖像拼接需要那幾步呢?簡單來說有以下幾步:
好吧,那就開始正式實現圖像配準。
第一步就是特征點提取。現在CV領域有很多特征點的定義,比如sift、surf、harris角點、ORB都是很有名的特征因子,都可以用來做圖像拼接的工作,他們各有優勢。本文將使用ORB和SURF進行圖像拼接,用其他方法進行拼接也是類似的。
基于SURF的圖像拼接
用SIFT算法來實現圖像拼接是很常用的方法,但是因為SIFT計算量很大,所以在速度要求很高的場合下不再適用。所以,它的改進方法SURF因為在速度方面有了明顯的提高(速度是SIFT的3倍),所以在圖像拼接領域還是大有作為。雖說SURF精確度和穩定性不及SIFT,但是其綜合能力還是優越一些。下面將詳細介紹拼接的主要步驟。
1.特征點提取和匹配
特征點提取和匹配的方法我在上一篇文章《OpenCV探索之路(二十三):特征檢測和特征匹配方法匯總》中做了詳細的介紹,在這里直接使用上文所總結的SURF特征提取和特征匹配的方法。
//提取特征點 SurfFeatureDetector Detector(2000); vector<KeyPoint> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2);//特征點描述,為下邊的特征點匹配做準備 SurfDescriptorExtractor Descriptor; Mat imageDesc1, imageDesc2; Descriptor.compute(image1, keyPoint1, imageDesc1); Descriptor.compute(image2, keyPoint2, imageDesc2);FlannBasedMatcher matcher; vector<vector<DMatch> > matchePoints; vector<DMatch> GoodMatchePoints;vector<Mat> train_desc(1, imageDesc1); matcher.add(train_desc); matcher.train();matcher.knnMatch(imageDesc2, matchePoints, 2); cout << "total match points: " << matchePoints.size() << endl;// Lowe's algorithm,獲取優秀匹配點 for (int i = 0; i < matchePoints.size(); i++) {if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance){GoodMatchePoints.push_back(matchePoints[i][0]);} }Mat first_match; drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); imshow("first_match ", first_match);2.圖像配準
這樣子我們就可以得到了兩幅待拼接圖的匹配點集,接下來我們進行圖像的配準,即將兩張圖像轉換為同一坐標下,這里我們需要使用findHomography函數來求得變換矩陣。但是需要注意的是,findHomography函數所要用到的點集是Point2f類型的,所有我們需要對我們剛得到的點集GoodMatchePoints再做一次處理,使其轉換為Point2f類型的點集。
vector<Point2f> imagePoints1, imagePoints2;for (int i = 0; i<GoodMatchePoints.size(); i++) {imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); }這樣子,我們就可以拿著imagePoints1, imagePoints2去求變換矩陣了,并且實現圖像配準。值得注意的是findHomography函數的參數中我們選澤了CV_RANSAC,這表明我們選擇RANSAC算法繼續篩選可靠地匹配點,這使得匹配點解更為精確。
//獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); 也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣 //圖像配準 Mat imageTransform1, imageTransform2; warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8)); imshow("直接經過透視矩陣變換", imageTransform1); imwrite("trans1.jpg", imageTransform1);3. 圖像拷貝
拷貝的思路很簡單,就是將左圖直接拷貝到配準圖上就可以了。
//創建拼接后的圖,需提前計算圖的大小 int dst_width = imageTransform1.cols; //取最右點的長度為拼接圖的長度 int dst_height = image02.rows;Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0);imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));imshow("b_dst", dst);4.圖像融合(去裂縫處理)
從上圖可以看出,兩圖的拼接并不自然,原因就在于拼接圖的交界處,兩圖因為光照色澤的原因使得兩圖交界處的過渡很糟糕,所以需要特定的處理解決這種不自然。這里的處理思路是加權融合,在重疊部分由前一幅圖像慢慢過渡到第二幅圖像,即將圖像的重疊區域的像素值按一定的權值相加合成新的圖像。
//優化兩圖的連接處,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) {int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界 double processWidth = img1.cols - start;//重疊區域的寬度 int rows = dst.rows;int cols = img1.cols; //注意,是列數*通道數double alpha = 1;//img1中像素的權重 for (int i = 0; i < rows; i++){uchar* p = img1.ptr<uchar>(i); //獲取第i行的首地址uchar* t = trans.ptr<uchar>(i);uchar* d = dst.ptr<uchar>(i);for (int j = start; j < cols; j++){//如果遇到圖像trans中無像素的黑點,則完全拷貝img1中的數據if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0){alpha = 1;}else{//img1中像素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好 alpha = (processWidth - (j - start)) / processWidth;}d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);}}}多嘗試幾張,驗證拼接效果
測試一
測試二
測試三
最后給出完整的SURF算法實現的拼接代碼。
using namespace cv; using namespace std;void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);typedef struct {Point2f left_top;Point2f left_bottom;Point2f right_top;Point2f right_bottom; }four_corners_t;four_corners_t corners;void CalcCorners(const Mat& H, const Mat& src) {double v2[] = { 0, 0, 1 };//左上角double v1[3];//變換后的坐標值Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量V1 = H * V2;//左上角(0,0,1)cout << "V2: " << V2 << endl;cout << "V1: " << V1 << endl;corners.left_top.x = v1[0] / v1[2];corners.left_top.y = v1[1] / v1[2];//左下角(0,src.rows,1)v2[0] = 0;v2[1] = src.rows;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2); //列向量V1 = Mat(3, 1, CV_64FC1, v1); //列向量V1 = H * V2;corners.left_bottom.x = v1[0] / v1[2];corners.left_bottom.y = v1[1] / v1[2];//右上角(src.cols,0,1)v2[0] = src.cols;v2[1] = 0;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2); //列向量V1 = Mat(3, 1, CV_64FC1, v1); //列向量V1 = H * V2;corners.right_top.x = v1[0] / v1[2];corners.right_top.y = v1[1] / v1[2];//右下角(src.cols,src.rows,1)v2[0] = src.cols;v2[1] = src.rows;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2); //列向量V1 = Mat(3, 1, CV_64FC1, v1); //列向量V1 = H * V2;corners.right_bottom.x = v1[0] / v1[2];corners.right_bottom.y = v1[1] / v1[2];}int main(int argc, char *argv[]) {Mat image01 = imread("g5.jpg", 1); //右圖Mat image02 = imread("g4.jpg", 1); //左圖imshow("p2", image01);imshow("p1", image02);//灰度圖轉換 Mat image1, image2;cvtColor(image01, image1, CV_RGB2GRAY);cvtColor(image02, image2, CV_RGB2GRAY);//提取特征點 SurfFeatureDetector Detector(2000); vector<KeyPoint> keyPoint1, keyPoint2;Detector.detect(image1, keyPoint1);Detector.detect(image2, keyPoint2);//特征點描述,為下邊的特征點匹配做準備 SurfDescriptorExtractor Descriptor;Mat imageDesc1, imageDesc2;Descriptor.compute(image1, keyPoint1, imageDesc1);Descriptor.compute(image2, keyPoint2, imageDesc2);FlannBasedMatcher matcher;vector<vector<DMatch> > matchePoints;vector<DMatch> GoodMatchePoints;vector<Mat> train_desc(1, imageDesc1);matcher.add(train_desc);matcher.train();matcher.knnMatch(imageDesc2, matchePoints, 2);cout << "total match points: " << matchePoints.size() << endl;// Lowe's algorithm,獲取優秀匹配點for (int i = 0; i < matchePoints.size(); i++){if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance){GoodMatchePoints.push_back(matchePoints[i][0]);}}Mat first_match;drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);imshow("first_match ", first_match);vector<Point2f> imagePoints1, imagePoints2;for (int i = 0; i<GoodMatchePoints.size(); i++){imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);}//獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣 //計算配準圖的四個頂點坐標CalcCorners(homo, image01);cout << "left_top:" << corners.left_top << endl;cout << "left_bottom:" << corners.left_bottom << endl;cout << "right_top:" << corners.right_top << endl;cout << "right_bottom:" << corners.right_bottom << endl;//圖像配準 Mat imageTransform1, imageTransform2;warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));//warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));imshow("直接經過透視矩陣變換", imageTransform1);imwrite("trans1.jpg", imageTransform1);//創建拼接后的圖,需提前計算圖的大小int dst_width = imageTransform1.cols; //取最右點的長度為拼接圖的長度int dst_height = image02.rows;Mat dst(dst_height, dst_width, CV_8UC3);dst.setTo(0);imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));imshow("b_dst", dst);OptimizeSeam(image02, imageTransform1, dst);imshow("dst", dst);imwrite("dst.jpg", dst);waitKey();return 0; }//優化兩圖的連接處,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) {int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界 double processWidth = img1.cols - start;//重疊區域的寬度 int rows = dst.rows;int cols = img1.cols; //注意,是列數*通道數double alpha = 1;//img1中像素的權重 for (int i = 0; i < rows; i++){uchar* p = img1.ptr<uchar>(i); //獲取第i行的首地址uchar* t = trans.ptr<uchar>(i);uchar* d = dst.ptr<uchar>(i);for (int j = start; j < cols; j++){//如果遇到圖像trans中無像素的黑點,則完全拷貝img1中的數據if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0){alpha = 1;}else{//img1中像素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好 alpha = (processWidth - (j - start)) / processWidth;}d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);}}}基于ORB的圖像拼接
利用ORB進行圖像拼接的思路跟上面的思路基本一樣,只是特征提取和特征點匹配的方式略有差異罷了。這里就不再詳細介紹思路了,直接貼代碼看效果。
using namespace cv; using namespace std;void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);typedef struct {Point2f left_top;Point2f left_bottom;Point2f right_top;Point2f right_bottom; }four_corners_t;four_corners_t corners;void CalcCorners(const Mat& H, const Mat& src) {double v2[] = { 0, 0, 1 };//左上角double v1[3];//變換后的坐標值Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量V1 = H * V2;//左上角(0,0,1)cout << "V2: " << V2 << endl;cout << "V1: " << V1 << endl;corners.left_top.x = v1[0] / v1[2];corners.left_top.y = v1[1] / v1[2];//左下角(0,src.rows,1)v2[0] = 0;v2[1] = src.rows;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2); //列向量V1 = Mat(3, 1, CV_64FC1, v1); //列向量V1 = H * V2;corners.left_bottom.x = v1[0] / v1[2];corners.left_bottom.y = v1[1] / v1[2];//右上角(src.cols,0,1)v2[0] = src.cols;v2[1] = 0;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2); //列向量V1 = Mat(3, 1, CV_64FC1, v1); //列向量V1 = H * V2;corners.right_top.x = v1[0] / v1[2];corners.right_top.y = v1[1] / v1[2];//右下角(src.cols,src.rows,1)v2[0] = src.cols;v2[1] = src.rows;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2); //列向量V1 = Mat(3, 1, CV_64FC1, v1); //列向量V1 = H * V2;corners.right_bottom.x = v1[0] / v1[2];corners.right_bottom.y = v1[1] / v1[2];}int main(int argc, char *argv[]) {Mat image01 = imread("t1.jpg", 1); //右圖Mat image02 = imread("t2.jpg", 1); //左圖imshow("p2", image01);imshow("p1", image02);//灰度圖轉換 Mat image1, image2;cvtColor(image01, image1, CV_RGB2GRAY);cvtColor(image02, image2, CV_RGB2GRAY);//提取特征點 OrbFeatureDetector surfDetector(3000); vector<KeyPoint> keyPoint1, keyPoint2;surfDetector.detect(image1, keyPoint1);surfDetector.detect(image2, keyPoint2);//特征點描述,為下邊的特征點匹配做準備 OrbDescriptorExtractor SurfDescriptor;Mat imageDesc1, imageDesc2;SurfDescriptor.compute(image1, keyPoint1, imageDesc1);SurfDescriptor.compute(image2, keyPoint2, imageDesc2);flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);vector<DMatch> GoodMatchePoints;Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1);flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams());// Lowe's algorithm,獲取優秀匹配點for (int i = 0; i < matchDistance.rows; i++){if (matchDistance.at<float>(i, 0) < 0.4 * matchDistance.at<float>(i, 1)){DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0));GoodMatchePoints.push_back(dmatches);}}Mat first_match;drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);imshow("first_match ", first_match);vector<Point2f> imagePoints1, imagePoints2;for (int i = 0; i<GoodMatchePoints.size(); i++){imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);}//獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個點,效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣 //計算配準圖的四個頂點坐標CalcCorners(homo, image01);cout << "left_top:" << corners.left_top << endl;cout << "left_bottom:" << corners.left_bottom << endl;cout << "right_top:" << corners.right_top << endl;cout << "right_bottom:" << corners.right_bottom << endl;//圖像配準 Mat imageTransform1, imageTransform2;warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));//warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));imshow("直接經過透視矩陣變換", imageTransform1);imwrite("trans1.jpg", imageTransform1);//創建拼接后的圖,需提前計算圖的大小int dst_width = imageTransform1.cols; //取最右點的長度為拼接圖的長度int dst_height = image02.rows;Mat dst(dst_height, dst_width, CV_8UC3);dst.setTo(0);imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));imshow("b_dst", dst);OptimizeSeam(image02, imageTransform1, dst);imshow("dst", dst);imwrite("dst.jpg", dst);waitKey();return 0; }//優化兩圖的連接處,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) {int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區域的左邊界 double processWidth = img1.cols - start;//重疊區域的寬度 int rows = dst.rows;int cols = img1.cols; //注意,是列數*通道數double alpha = 1;//img1中像素的權重 for (int i = 0; i < rows; i++){uchar* p = img1.ptr<uchar>(i); //獲取第i行的首地址uchar* t = trans.ptr<uchar>(i);uchar* d = dst.ptr<uchar>(i);for (int j = start; j < cols; j++){//如果遇到圖像trans中無像素的黑點,則完全拷貝img1中的數據if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0){alpha = 1;}else{//img1中像素的權重,與當前處理點距重疊區域左邊界的距離成正比,實驗證明,這種方法確實好 alpha = (processWidth - (j - start)) / processWidth;}d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);}}}看一看拼接效果,我覺得還是不錯的。
看一下這一組圖片,這組圖片產生了鬼影,為什么?因為兩幅圖中的人物走動了啊!所以要做圖像拼接,盡量保證使用的是靜態圖片,不要加入一些動態因素干擾拼接。
opencv自帶的拼接算法stitch
opencv其實自己就有實現圖像拼接的算法,當然效果也是相當好的,但是因為其實現很復雜,而且代碼量很龐大,其實在一些小應用下的拼接有點殺雞用牛刀的感覺。最近在閱讀sticth源碼時,發現其中有幾個很有意思的地方。
1.opencv stitch選擇的特征檢測方式
一直很好奇opencv stitch算法到底選用了哪個算法作為其特征檢測方式,是ORB,SIFT還是SURF?讀源碼終于看到答案。
stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder()); stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder());在源碼createDefault函數中(默認設置),第一選擇是SURF,第二選擇才是ORB(沒有NONFREE模塊才選),所以既然大牛們這么選擇,必然是經過綜合考慮的,所以應該SURF算法在圖像拼接有著更優秀的效果。
2.opencv stitch獲取匹配點的方式
以下代碼是opencv stitch源碼中的特征點提取部分,作者使用了兩次特征點提取的思路:先對圖一進行特征點提取和篩選匹配(1->2),再對圖二進行特征點的提取和匹配(2->1),這跟我們平時的一次提取的思路不同,這種二次提取的思路可以保證更多的匹配點被選中,匹配點越多,findHomography求出的變換越準確。這個思路值得借鑒。
matches_info.matches.clear();Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams(); Ptr<flann::SearchParams> searchParams = new flann::SearchParams();if (features2.descriptors.depth() == CV_8U) {indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); }FlannBasedMatcher matcher(indexParams, searchParams); vector< vector<DMatch> > pair_matches; MatchesSet matches;// Find 1->2 matches matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) {if (pair_matches[i].size() < 2)continue;const DMatch& m0 = pair_matches[i][0];const DMatch& m1 = pair_matches[i][1];if (m0.distance < (1.f - match_conf_) * m1.distance){matches_info.matches.push_back(m0);matches.insert(make_pair(m0.queryIdx, m0.trainIdx));} } LOG("\n1->2 matches: " << matches_info.matches.size() << endl);// Find 2->1 matches pair_matches.clear(); matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) {if (pair_matches[i].size() < 2)continue;const DMatch& m0 = pair_matches[i][0];const DMatch& m1 = pair_matches[i][1];if (m0.distance < (1.f - match_conf_) * m1.distance)if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);這里我仿照opencv源碼二次提取特征點的思路對我原有拼接代碼進行改寫,實驗證明獲取的匹配點確實較一次提取要多。
//提取特征點 SiftFeatureDetector Detector(1000); // 海塞矩陣閾值,在這里調整精度,值越大點越少,越精準 vector<KeyPoint> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2);//特征點描述,為下邊的特征點匹配做準備 SiftDescriptorExtractor Descriptor; Mat imageDesc1, imageDesc2; Descriptor.compute(image1, keyPoint1, imageDesc1); Descriptor.compute(image2, keyPoint2, imageDesc2);FlannBasedMatcher matcher; vector<vector<DMatch> > matchePoints; vector<DMatch> GoodMatchePoints;MatchesSet matches;vector<Mat> train_desc(1, imageDesc1); matcher.add(train_desc); matcher.train();matcher.knnMatch(imageDesc2, matchePoints, 2);// Lowe's algorithm,獲取優秀匹配點 for (int i = 0; i < matchePoints.size(); i++) {if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance){GoodMatchePoints.push_back(matchePoints[i][0]);matches.insert(make_pair(matchePoints[i][0].queryIdx, matchePoints[i][0].trainIdx));} } cout<<"\n1->2 matches: " << GoodMatchePoints.size() << endl;FlannBasedMatcher matcher2; matchePoints.clear(); vector<Mat> train_desc2(1, imageDesc2); matcher2.add(train_desc2); matcher2.train();matcher2.knnMatch(imageDesc1, matchePoints, 2); // Lowe's algorithm,獲取優秀匹配點 for (int i = 0; i < matchePoints.size(); i++) {if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance){if (matches.find(make_pair(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx)) == matches.end()){GoodMatchePoints.push_back(DMatch(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx, matchePoints[i][0].distance));}} } cout<<"1->2 & 2->1 matches: " << GoodMatchePoints.size() << endl;最后再看一下opencv stitch的拼接效果吧~速度雖然比較慢,但是效果還是很好的。
using namespace std; using namespace cv; bool try_use_gpu = false; vector<Mat> imgs; string result_name = "dst1.jpg"; int main(int argc, char * argv[]) {Mat img1 = imread("34.jpg");Mat img2 = imread("35.jpg");imshow("p1", img1);imshow("p2", img2);if (img1.empty() || img2.empty()){cout << "Can't read image" << endl;return -1;}imgs.push_back(img1);imgs.push_back(img2);Stitcher stitcher = Stitcher::createDefault(try_use_gpu);// 使用stitch函數進行拼接Mat pano;Stitcher::Status status = stitcher.stitch(imgs, pano);if (status != Stitcher::OK){cout << "Can't stitch images, error code = " << int(status) << endl;return -1;}imwrite(result_name, pano);Mat pano2 = pano.clone();// 顯示源圖像,和結果圖像imshow("全景圖像", pano);if (waitKey() == 27)return 0; }總結
以上是生活随笔為你收集整理的图像拼接和图像融合技术的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 如何选择汽车LiDAR的激光器和光电探测
- 下一篇: 基于Kubernetes构建Docker