立体匹配之NCC算法
生活随笔
收集整理的這篇文章主要介紹了
立体匹配之NCC算法
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
FROM:http://blog.csdn.net/tulun/article/details/6388759
NCC算法(Normal Cross Correlation),具體原理見相關圖像處理書籍。
該程序是opencv中文論壇的牛人貢獻的,感謝他的工作。
?
(程序所需圖片可以在網上找如http://vision.middlebury.edu/stereo/data/scenes2003/)
?
#include <iostream>#include <stdio.h>
#include <stdlib.h>
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <math.h>
#include <ctime>
using namespace std;
template<class T> class Image
{
private:
??? IplImage* imgp;
public:
??? Image(IplImage* img=0){imgp=img;}
??? ~Image(){imgp=0;}
??? void operator=(IplImage* img){imgp=img;}
??? inline T* operator[](const int rowIndx)
??? {
??? ??? return((T*)(imgp->imageData+rowIndx*imgp->widthStep));
??? }
};
typedef struct
{
??? unsigned char b,g,r;
}RgbPixel;
typedef struct
{
??? float b,g,r;
}RgbPixelFloat;
typedef Image<RgbPixel> RgbImage;
typedef Image<RgbPixelFloat> RgbImageFloat;
typedef Image<unsigned char> BwImage;
typedef Image<float> BwImageFloat;
void displayImageProperty(IplImage* image)
{
??? cout<<"-------Image Properties--------"<<endl;
??? cout<<"Image width="<<image->width<<endl;
??? cout<<"Image height="<<image->height<<endl;
??? cout<<"Image depth="<<image->depth<<endl;
??? cout<<"Image nSize="<<image->nSize<<endl;
??? cout<<"Image nChannels="<<image->nChannels<<endl;
??? char* origin;
??? char* dataOrder;
??? if (image->origin==0)
??? {
??? ??? origin="Top-left";
??? }
??? else
??? {
??????? origin="Below-left";//image->origin=1
??? }
??? cout<<"Image origin="<<origin<<endl;
??? if (image->dataOrder==0)
??? {
??????? dataOrder="Order_Pixel(Interleaved)";
??? }
??? else
??? {
??????? dataOrder="Order_Plane";//image->dataOrder=1
??? }
??? cout<<"Image dataOrder="<<dataOrder<<endl;
??? cout<<"Image widthStep="<<image->widthStep<<" Bytes"<<endl;
}
// display an image in a new window with title to be given.
void displayImageNewWindow(char* title,CvArr* img)
{
??? cvNamedWindow(title, CV_WINDOW_AUTOSIZE );
??? cvShowImage(title,img);
}
int getMaxMin(double value[],int valueSize, int maxmin)
{
??? int pos=0;
??? int i=0;
??? double max1=-1;//?-999999;
??? double min1=999999;
??????
??? if (maxmin==1)
??? {
??? ??? //find max
??????? for (i=0;i<valueSize;i++)
??? ??? {
??? ??? ??? //find the index with the max ncc;
??????????? if (value[i]>max1)
??? ??? ??? {
??????????????? pos=i;
??????????????? max1=value[i];
??????????? }
???????? }
??? }
??????
??? if (maxmin==0)
??? {
??? ??? //find min
??????? for (i=0;i<valueSize;i++)
??? ??? {
??? ??? ??? //find the index with the max ncc;
??????????? if (value[i]<min1)
??? ??? ??? {
??????????????? pos=i;
??????????????? min1=value[i];
??????????? }
???????? }
??? }
??? return pos;
}
IplImage* generateDisparityImage(IplImage* greyLeftImg32,IplImage* greyRightImg32,int windowSize,int DSR)
{
??? int offset=floor((double)windowSize/2);
??? int height=greyLeftImg32->height;
??? int width=greyLeftImg32->width;
??? double* localNCC=new double[DSR];
??? int x=0, y=0,d=0,m=0;
??? int N=windowSize;???????????
??? IplImage* leftWinImg=cvCreateImage(cvSize(N,N),32,1);//mySubImage(greyLeftImg32,cvRect(0,0,N,N));
??? IplImage* rightWinImg=cvCreateImage(cvSize(N,N),32,1);;//mySubImage(greyRightImg32,cvRect(0,0,N,N));
??? IplImage* disparity=cvCreateImage(cvSize(width,height),8,1);//or IPL_DEPTH_8U
??? BwImage imgA(disparity);
??????
??? for (y=0;y<height;y++)
??? {
??? ??? for (x=0;x<width;x++)
??? ??? {
??? ??? ??? imgA[y][x]=0;
??? ??? }
??? }
??????
??? CvScalar s1;
??? CvScalar s2;
??? for (y=0;y<height-N;y++)
??? {
??? ??? //height-N
??? ??? for (x=0;x<width-N;x++)
??? ??? {
??? ??? ??? //width-N
??????????? //getWindow(i,j,leftim,wl,N);
??????????? cvSetImageROI(greyLeftImg32, cvRect(x,y,N,N));
??????????? s1=cvAvg(greyLeftImg32,NULL);
??????????? cvSubS(greyLeftImg32,s1,leftWinImg,NULL);//zero-means
??????????? cvNormalize(leftWinImg,leftWinImg,1,0,CV_L2,NULL);//0變成1
??????????? d=0;
????????????
??????????? //initialise localNCC
??????????? for (m=0;m<DSR;m++)
??? ??? ??? {
??? ??? ??? ??? localNCC[m]=0;
??? ??? ??? }
????????????
??????????? do{
??? ??? ??? ??? if (x-d>=0)
??? ??? ??? ??? {
??? ??? ??? ??? ??? cvSetImageROI(greyRightImg32, cvRect(x-d,y,N,N));
??????????????????? s2=cvAvg(greyRightImg32,NULL);
??????????????????? cvSubS(greyRightImg32,s2,rightWinImg,NULL);//zero-means
??????????????????? cvNormalize(rightWinImg,rightWinImg,1,0,CV_L2,NULL);//0變成1
??????????????? }
??? ??? ??? ??? else
??? ??? ??? ??? {
??? ??? ??? ??? ??? break;
??????????????? }
??????????????? localNCC[d]=cvDotProduct(leftWinImg,rightWinImg);
??????????????? cvResetImageROI(greyRightImg32);
??????????????? d++;
???????????? }while(d<=DSR);
????????????
???????????? //to find the best d and store
???????????? imgA[y+offset][x+offset]=getMaxMin(localNCC,DSR,1)*16;
???????????? cvResetImageROI(greyLeftImg32);
????????? }//x
????????? if (y%10==0)
??? ??? ??? ? cout<<"row="<<y<<" of "<<height<<endl;
?????? }//y
??????
?????? cvReleaseImage(&leftWinImg);
?????? cvReleaseImage(&rightWinImg);
??????????
??? ?? return disparity;
}
int main (int argc, char * const argv[])
{
??? // insert code here...
??? cout << "Stereo Normalized Cross Correlation"<<endl;
??????
??? //**********image input*********************//
??????
??? char* filename1="im0.ppm";//im2_cone.png
??? IplImage* greyLeftImg= cvLoadImage(filename1,0);
??? char* filename2="im1.ppm";
??? IplImage* greyRightImg= cvLoadImage(filename2,0);
??????
??? if (greyLeftImg==NULL)
??? {
??? ??? cout << "No valid image input."<<endl;
??????? //char c=getchar();
??????? return 1;
??? }
??? else
??? {
??? ??? displayImageProperty(greyLeftImg);
??? }
??????
??? if (greyRightImg==NULL)
??? {
??? ??? cout << "No valid image input."<<endl;
??????? //char c=getchar();
??????? return 1;
??? }
??? int width=greyLeftImg->width;
??? int height=greyLeftImg->height;
??? /****************8U to 32F**********************/
??? IplImage* greyLeftImg32=cvCreateImage(cvSize(width,height),32,1);//IPL_DEPTH_32F
??? IplImage* greyRightImg32=cvCreateImage(cvSize(width,height),32,1);
??? cvConvertScale(greyLeftImg, greyLeftImg32, 1/255.);
??? cvConvertScale(greyRightImg, greyRightImg32, 1/255.);//1/255. equals to 1/255.0
??????
??? //-------------Computing stereo matching----------------
??? time_t tstart, tend;
??? tstart = time(0);
??? int windowSize=11,DSR=20;//Disparity Search Range
??? IplImage* disparity32=generateDisparityImage(greyLeftImg32,greyRightImg32,windowSize,DSR);
??? tend = time(0);
??? cout << "It took "<< difftime(tend, tstart) <<" second(s)."<< endl;
??? displayImageNewWindow("Dispairty Image",disparity32);
??? displayImageNewWindow("Left Image",greyLeftImg32);
??? displayImageNewWindow("Right Image",greyRightImg32);
??? //cvSaveImage("D:/OpenCV_stuff/SampleImages/disparity.jpg",disparity32);
??? //********destroy window************/
??? cvWaitKey(0);
??? cvReleaseImage(&greyLeftImg32);
??? cvReleaseImage(&greyRightImg32);
??? cvReleaseImage(&greyLeftImg);
??? cvReleaseImage(&greyRightImg);
??? cvReleaseImage(&disparity32);
??? cvDestroyWindow("Left Image");
??? cvDestroyWindow("Right Image");
??? cvDestroyWindow("Dispairty Image");
??? return 0;
}
總結
以上是生活随笔為你收集整理的立体匹配之NCC算法的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: SAD立体匹配算法在opencv中的实现
- 下一篇: 基于弹性束图匹配的人脸识别