MongoDB ( 五 )高级_索引
生活随笔
收集整理的這篇文章主要介紹了
MongoDB ( 五 )高级_索引
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
索引
// 執行 > db.randomInfo.getIndexes() [{"v" : 2,"key" : {"_id" : 1},"name" : "_id_","ns" : "company.randomInfo"} ] // 這是默認的索引,我們一般不會使用這個索引的
到這里Mongodb的基本知識就基本結束了,下一節我們將會學習如何管理Mongodb
在認識索引的之前我們先建立一張表,并往其中插入200萬條數據。
// test.js //生成隨機數 function GetRandomNum(min,max){let range = max-min; //得到隨機數區間let rand = Math.random(); //得到隨機值return (min + Math.round(rand *range)); //最小值+隨機數取整 }//console.log(GetRandomNum(10000,99999));//生成隨機用戶名 function GetRadomUserName(min,max){let tempStringArray= "123456789qwertyuiopasdfghjklzxcvbnm".split("");//構造生成時的字母庫數組let outPuttext = ""; //最后輸出的變量//進行循環,隨機生產用戶名的長度,這里需要生成隨機數方法的配合for(let i=1 ;i<GetRandomNum(min,max);i++){//隨機抽取字母,拼裝成需要的用戶名outPuttext=outPuttext+tempStringArray[GetRandomNum(0,tempStringArray.length)]}return outPuttext; }var db = connect('company'); db.randomInfo.drop(); var tempInfo = []; for (let i=0;i<2000000;i++){tempInfo.push({username:GetRadomUserName(7,16),regeditTime:new Date(),randNum0:GetRandomNum(100000,999999),randNum1:GetRandomNum(100000,999999),randNum2:GetRandomNum(100000,999999),randNum3:GetRandomNum(100000,999999),randNum4:GetRandomNum(100000,999999),randNum5:GetRandomNum(100000,999999),randNum6:GetRandomNum(100000,999999),randNum7:GetRandomNum(100000,999999),randNum8:GetRandomNum(100000,999999),randNum8:GetRandomNum(100000,999999),}) }db.randomInfo.insert(tempInfo); > mongo > load("./test.js") connecting to: mongodb://127.0.0.1:27017/company MongoDB server version: 3.4.10 ··· // 這個過程可能需要2分鐘左右> use company switched to db company > db.randomInfo.stats() // 使用這個查看插入了幾條數據 {"ns" : "company.randomInfo","size" : 421908971,"count" : 1835000,"avgObjSize" : 229,"storageSize" : 188686336,"capped" : false,"wiredTiger" : {"metadata" : {"formatVersion" : 1},"creationString" : "access_pattern_hint=none,allocation_size=4KB,app_metadata=(formatVersion=1),block_allocation=best,block_compressor=snappy,cache_resident=false,checksum=on,colgroups=,collator=,columns=,dictionary=0,encryption=(keyid=,name=),exclusive=false,extractor=,format=btree,huffman_key=,huffman_value=,ignore_in_memory_cache_size=false,immutable=false,internal_item_max=0,internal_key_max=0,internal_key_truncate=true,internal_page_max=4KB,key_format=q,key_gap=10,leaf_item_max=0,leaf_key_max=0,leaf_page_max=32KB,leaf_value_max=64MB,log=(enabled=true),lsm=(auto_throttle=true,bloom=true,bloom_bit_count=16,bloom_config=,bloom_hash_count=8,bloom_oldest=false,chunk_count_limit=0,chunk_max=5GB,chunk_size=10MB,merge_max=15,merge_min=0),memory_page_max=10m,os_cache_dirty_max=0,os_cache_max=0,prefix_compression=false,prefix_compression_min=4,source=,split_deepen_min_child=0,split_deepen_per_child=0,split_pct=90,type=file,value_format=u","type" : "file","uri" : "statistics:table:collection-0-5869292382622143333","LSM" : {"bloom filter false positives" : 0,"bloom filter hits" : 0,"bloom filter misses" : 0,"bloom filter pages evicted from cache" : 0,"bloom filter pages read into cache" : 0,"bloom filters in the LSM tree" : 0,"chunks in the LSM tree" : 0,"highest merge generation in the LSM tree" : 0,"queries that could have benefited from a Bloom filter that did not exist" : 0,"sleep for LSM checkpoint throttle" : 0,"sleep for LSM merge throttle" : 0,"total size of bloom filters" : 0},"block-manager" : {"allocations requiring file extension" : 15471,"blocks allocated" : 15475,"blocks freed" : 39,"checkpoint size" : 188481536,"file allocation unit size" : 4096,"file bytes available for reuse" : 188416,"file magic number" : 120897,"file major version number" : 1,"file size in bytes" : 188686336,"minor version number" : 0},"btree" : {"btree checkpoint generation" : 20,"column-store fixed-size leaf pages" : 0,"column-store internal pages" : 0,"column-store variable-size RLE encoded values" : 0,"column-store variable-size deleted values" : 0,"column-store variable-size leaf pages" : 0,"fixed-record size" : 0,"maximum internal page key size" : 368,"maximum internal page size" : 4096,"maximum leaf page key size" : 2867,"maximum leaf page size" : 32768,"maximum leaf page value size" : 67108864,"maximum tree depth" : 4,"number of key/value pairs" : 0,"overflow pages" : 0,"pages rewritten by compaction" : 0,"row-store internal pages" : 0,"row-store leaf pages" : 0},"cache" : {"bytes currently in the cache" : 502018875,"bytes read into cache" : 0,"bytes written from cache" : 437640755,"checkpoint blocked page eviction" : 0,"data source pages selected for eviction unable to be evicted" : 12,"hazard pointer blocked page eviction" : 0,"in-memory page passed criteria to be split" : 130,"in-memory page splits" : 62,"internal pages evicted" : 0,"internal pages split during eviction" : 1,"leaf pages split during eviction" : 56,"modified pages evicted" : 56,"overflow pages read into cache" : 0,"overflow values cached in memory" : 0,"page split during eviction deepened the tree" : 1,"page written requiring lookaside records" : 0,"pages read into cache" : 0,"pages read into cache requiring lookaside entries" : 0,"pages requested from the cache" : 2232017,"pages written from cache" : 15472,"pages written requiring in-memory restoration" : 0,"tracked dirty bytes in the cache" : 0,"unmodified pages evicted" : 0},"cache_walk" : {"Average difference between current eviction generation when the page was last considered" : 0,"Average on-disk page image size seen" : 0,"Clean pages currently in cache" : 0,"Current eviction generation" : 0,"Dirty pages currently in cache" : 0,"Entries in the root page" : 0,"Internal pages currently in cache" : 0,"Leaf pages currently in cache" : 0,"Maximum difference between current eviction generation when the page was last considered" : 0,"Maximum page size seen" : 0,"Minimum on-disk page image size seen" : 0,"On-disk page image sizes smaller than a single allocation unit" : 0,"Pages created in memory and never written" : 0,"Pages currently queued for eviction" : 0,"Pages that could not be queued for eviction" : 0,"Refs skipped during cache traversal" : 0,"Size of the root page" : 0,"Total number of pages currently in cache" : 0},"compression" : {"compressed pages read" : 0,"compressed pages written" : 15312,"page written failed to compress" : 0,"page written was too small to compress" : 158,"raw compression call failed, additional data available" : 0,"raw compression call failed, no additional data available" : 0,"raw compression call succeeded" : 0},"cursor" : {"bulk-loaded cursor-insert calls" : 0,"create calls" : 3,"cursor-insert key and value bytes inserted" : 429166606,"cursor-remove key bytes removed" : 0,"cursor-update value bytes updated" : 0,"insert calls" : 1835000,"next calls" : 162051,"prev calls" : 1,"remove calls" : 0,"reset calls" : 30748,"restarted searches" : 0,"search calls" : 0,"search near calls" : 1227,"truncate calls" : 0,"update calls" : 0},"reconciliation" : {"dictionary matches" : 0,"fast-path pages deleted" : 0,"internal page key bytes discarded using suffix compression" : 31112,"internal page multi-block writes" : 4,"internal-page overflow keys" : 0,"leaf page key bytes discarded using prefix compression" : 0,"leaf page multi-block writes" : 66,"leaf-page overflow keys" : 0,"maximum blocks required for a page" : 242,"overflow values written" : 0,"page checksum matches" : 209,"page reconciliation calls" : 171,"page reconciliation calls for eviction" : 57,"pages deleted" : 1},"session" : {"object compaction" : 0,"open cursor count" : 3},"transaction" : {"update conflicts" : 0}},"nindexes" : 1,"totalIndexSize" : 18272256,"indexSizes" : {"_id_" : 18272256},"ok" : 1 }// 執行 > db.randomInfo.getIndexes() [{"v" : 2,"key" : {"_id" : 1},"name" : "_id_","ns" : "company.randomInfo"} ] // 這是默認的索引,我們一般不會使用這個索引的
建立一個索引
> db.randomInfo.ensureIndex({username: 1}) {"createdCollectionAutomatically" : false,"numIndexesBefore" : 1,"numIndexesAfter" : 2,"ok" : 1 } > db.randomInfo.getIndexes() // 然后查看發現有兩條索引了 [{"v" : 2,"key" : {"_id" : 1},"name" : "_id_","ns" : "company.randomInfo"},{"v" : 2,"key" : {"username" : 1},"name" : "username_1","ns" : "company.randomInfo"} ] > //test1.js var startTime = new Date().getTime() //得到程序運行的開始時間 var db = connect('company') //鏈接數據庫 var rs=db.randomInfo.find({username:"tfruhjy8k"}) //根據用戶名查找用戶 rs.forEach(rs=>{printjson(rs)}) //循環輸出 var runTime = new Date().getTime()-startTime; //得到程序運行時間 print('[SUCCESS]This run time is:'+runTime+'ms') //打印出運行時間 // 執行查找 > load('./test1.js') connecting to: mongodb://127.0.0.1:27017/company MongoDB server version: 3.4.10 {"_id" : ObjectId("5ac8b73b5646d96c6db3e1a8"),"username" : "od2umr6kec","regeditTime" : ISODate("2018-04-07T12:18:44.292Z"),"randNum0" : 577322,"randNum1" : 961443,"randNum2" : 999621,"randNum3" : 968291,"randNum4" : 834839,"randNum5" : 637084,"randNum6" : 172311,"randNum7" : 219693,"randNum8" : 617081 } [SUCCESS]This run time is:11ms // 關鍵看這里,你會發現時間縮短了好多呢 true >無論是在關系型數據庫還是文檔數據庫,建立索引都是非常重要的。前邊講了,索引這東西是要消耗硬盤和內存資源的,所以還是要根據程序需要進行建立了。MongoDB也給我們進行了限制,只允許我們建立64個索引值。
復合索引復合索引就是兩條以上的索引
// 在建立一個索引 > db.randomInfo.ensureIndex({randNum0: 1}); {"createdCollectionAutomatically" : false,"numIndexesBefore" : 2,"numIndexesAfter" : 3,"ok" : 1 } > db.randomInfo.getIndexes(); [{"v" : 2,"key" : {"_id" : 1},"name" : "_id_","ns" : "company.randomInfo"},{"v" : 2,"key" : {"username" : 1},"name" : "username_1","ns" : "company.randomInfo"},{"v" : 2,"key" : {"randNum0" : 1},"name" : "randNum0_1","ns" : "company.randomInfo"} ] >我們同時查詢兩個索引的值,看看效果是怎么樣的。
// var startTime=new Date().getTime(); var db = connect('company');var rs= db.randomInfo.find({username:'7xwb8y3',randNum0:565509});rs.forEach(rs=>{printjson(rs)});var runTime = new Date().getTime()-startTime; print('[Demo]this run time is '+runTime+'ms'); // 從性能上看并沒有什么特殊的變化,查詢時間還是在10ms左右。MongoDB的復合查詢是按照我們的索引順序進行查詢的。就是我們用db.randomInfo.getIndexes()查詢出的數組。指定索引查找
// var rs= db.randomInfo.find({username:'7xwb8y3',randNum0:565509}).hint({randNum0:1});刪除索引
db.randomInfo.dropIndex('randNum0_1');//索引的唯一ID這里需要注意的是刪除時填寫的值,并不是我們的字段名稱(key),而是我們索引查詢表中的name值。這是一個小坑。
全文索引有些時候需要在大篇幅的文章中搜索關鍵詞,比如我寫的文章每篇都在萬字以上,這時候你想搜索關鍵字是非常不容易的,MongoDB為我們提供了全文索引。
// 插入兩條數據 db.info.insert({contextInfo:"I am a programmer, I love life, love family. Every day after work, I write a diary."}) db.info.insert({contextInfo:"I am a programmer, I love PlayGame, love drink. Every day after work, I playGame and drink."})建立全文索引
db.info.ensureIndex({contextInfo:'text'}); //需要注意的是這里使用text關鍵詞來代表全文索引,我們在這里就不建立數據模型了。全文索引查找
// $text:表示要在全文索引中查東西。這里的$test指的就是contextInfo // $search:后邊跟查找的內容。 db.info.find({$text:{$search:"programmer"}}); // 查找contextInfo中含有programmer關鍵字的查找多個詞
// 比如我們希望查找數據中有programmer,family,diary,drink的數據(這是或的關系),所以兩條數據都會出現。 db.info.find({$text:{$search:"programmer family diary drink"}})// 如果我們這時候希望不查找出來有drink這個單詞的記錄,我們可以使用“-”減號來取消。 db.info.find({$text:{$search:"programmer family diary -drink"}})// 全文搜索中是支持轉義符的,比如我們想搜索的是兩個詞(love PlayGame和drink),這時候需要使用\斜杠來轉意。 db.info.find({$text:{$search:"\"love PlayGame\" drink"}}) 全文索引在工作還是經常使用的,比如博客文章的搜索,長文件的關鍵詞搜索,這些都需要使用全文索引來進行。到這里Mongodb的基本知識就基本結束了,下一節我們將會學習如何管理Mongodb
- 參考文獻
技術胖
總結
以上是生活随笔為你收集整理的MongoDB ( 五 )高级_索引的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Ansible第二篇:ansible-p
- 下一篇: 多线程技术点二