Modular Multiplicative Inverse(模乘逆元)
生活随笔
收集整理的這篇文章主要介紹了
Modular Multiplicative Inverse(模乘逆元)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
計算模乘逆元原理上有四種方法:
1.暴力算法
2.擴展歐幾里得算法
3.費爾馬小定理
4.歐拉定理
模乘逆元定義:滿足 ab≡1(mod m),稱b為a模乘逆元。以下是有關概念以及四種方法及程序。
文章出處:Modular Multiplicative Inverse
The modular multiplicative inverse of an integer a modulo m is an integer x such that
That is, it is the multiplicative inverse in the ring of integers modulo m. This is equivalent to
1. Brute Force
We can calculate the inverse using a brute force approach where we multiply a with all possible valuesx and find ax such that Here’s a sample C++ code:
2. Using Extended Euclidean Algorithm
We have to find a number x such that a·x = 1 (mod m). This can be written as well as a·x = 1 + m·y, which rearranges into a·x – m·y = 1. Since x and y need not be positive, we can write it as well in the standard form, a·x + m·y = 1.
Iterative Method
/* This function return the gcd of a and b followed bythe pair x and y of equation ax + by = gcd(a,b)*/ pair<int, pair<int, int> > extendedEuclid(int a, int b) {int x = 1, y = 0;int xLast = 0, yLast = 1;int q, r, m, n;while(a != 0) {q = b / a;r = b % a;m = xLast - q * x;n = yLast - q * y;xLast = x, yLast = y;x = m, y = n;b = a, a = r;}return make_pair(b, make_pair(xLast, yLast)); }int modInverse(int a, int m) {return (extendedEuclid(a,m).second.first + m) % m; }
Recursive Method /* This function return the gcd of a and b followed bythe pair x and y of equation ax + by = gcd(a,b)*/ pair<int, pair<int, int> > extendedEuclid(int a, int b) {if(a == 0) return make_pair(b, make_pair(0, 1));pair<int, pair<int, int> > p;p = extendedEuclid(b % a, a);return make_pair(p.first, make_pair(p.second.second - p.second.first*(b/a), p.second.first)); }int modInverse(int a, int m) {return (extendedEuclid(a,m).second.first + m) % m; }
3. Using Fermat’s Little Theorem
Fermat’s little theorem states that if m is a prime and a is an integer co-prime to m, thenap ? 1 will be evenly divisible by m. That is or Here’s a sample C++ code: /* This function calculates (a^b)%MOD */ int pow(int a, int b, int MOD) { int x = 1, y = a;while(b > 0) {if(b%2 == 1) {x=(x*y);if(x>MOD) x%=MOD;}y = (y*y);if(y>MOD) y%=MOD;b /= 2;}return x; }int modInverse(int a, int m) {return pow(a,m-2,m); }
4. Using Euler’s Theorem
Fermat’s Little theorem can only be used if m is a prime. If m is not a prime we can use Euler’s Theorem, which is a generalization of Fermat’s Little theorem. According to Euler’s theorem, if a is coprime to m, that is, gcd(a, m) = 1, then, where where φ(m) is Euler Totient Function. Therefore the modular multiplicative inverse can be found directly:. The problem here is finding φ(m). If we know φ(m), then it is very similar to above method. vector<int> inverseArray(int n, int m) {vector<int> modInverse(n + 1,0);modInverse[1] = 1;for(int i = 2; i <= n; i++) {modInverse[i] = (-(m/i) * modInverse[m % i]) % m + m;}return modInverse; }
轉載于:https://www.cnblogs.com/tigerisland/p/7564860.html
《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀總結
以上是生活随笔為你收集整理的Modular Multiplicative Inverse(模乘逆元)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 关于系统重装的一件小事
- 下一篇: 理科的至尊思想:进制之间的转换