flink on yarn部分源码解析 (FLIP-6 new mode)
我們在https://www.cnblogs.com/dongxiao-yang/p/9403427.html文章里分析了flink提交single job到yarn集群上的代碼,flink在1.5版本后對整個框架的deploy方式重構了全新的流程(參考https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077),本文基于flink1.6.1版本源碼分析一下新模式在yarn的整個流程。
?
一 初始化
客戶端本地整個初始化流程與https://www.cnblogs.com/dongxiao-yang/p/9403427.html差不多,由于newmode的關系,幾個有區別的地方為
1?final ClusterDescriptor<T> clusterDescriptor = customCommandLine.createClusterDescriptor(commandLine); ,返回的具體對象類為YarnClusterDescriptor
2 ClientFrontend.runProgram方法會進入if (isNewMode && clusterId == null && runOptions.getDetachedMode()) {..方法塊,調用路徑為
YarnClusterDescriptor.deployJobCluster->AbstractYarnClusterDescriptor.deployInternal->startAppMaster這個時候我們發現AM的啟動類變成了YarnJobClusterEntrypoint
?
二?YarnJobClusterEntrypoint
?YarnJobClusterEntrypoint的main函數是整個AM進程的啟動入口,在方法的最后會調用其祖父類ClusterEntrypoint的startCluster方法開啟整個集群組件的啟動過程。
具體調用鏈路為startCluster->runCluster->startClusterComponents
protected void startClusterComponents(Configuration configuration,RpcService rpcService,HighAvailabilityServices highAvailabilityServices,BlobServer blobServer,HeartbeatServices heartbeatServices,MetricRegistry metricRegistry) throws Exception {synchronized (lock) {dispatcherLeaderRetrievalService = highAvailabilityServices.getDispatcherLeaderRetriever();resourceManagerRetrievalService = highAvailabilityServices.getResourceManagerLeaderRetriever();LeaderGatewayRetriever<DispatcherGateway> dispatcherGatewayRetriever = new RpcGatewayRetriever<>(rpcService,DispatcherGateway.class,DispatcherId::fromUuid,10,Time.milliseconds(50L));LeaderGatewayRetriever<ResourceManagerGateway> resourceManagerGatewayRetriever = new RpcGatewayRetriever<>(rpcService,ResourceManagerGateway.class,ResourceManagerId::fromUuid,10,Time.milliseconds(50L));// TODO: Remove once we have ported the MetricFetcher to the RpcEndpointfinal ActorSystem actorSystem = ((AkkaRpcService) rpcService).getActorSystem();final Time timeout = Time.milliseconds(configuration.getLong(WebOptions.TIMEOUT));webMonitorEndpoint = createRestEndpoint(configuration,dispatcherGatewayRetriever,resourceManagerGatewayRetriever,transientBlobCache,rpcService.getExecutor(),new AkkaQueryServiceRetriever(actorSystem, timeout),highAvailabilityServices.getWebMonitorLeaderElectionService());LOG.debug("Starting Dispatcher REST endpoint.");webMonitorEndpoint.start();resourceManager = createResourceManager(configuration,ResourceID.generate(),rpcService,highAvailabilityServices,heartbeatServices,metricRegistry,this,clusterInformation,webMonitorEndpoint.getRestBaseUrl());jobManagerMetricGroup = MetricUtils.instantiateJobManagerMetricGroup(metricRegistry, rpcService.getAddress());final HistoryServerArchivist historyServerArchivist = HistoryServerArchivist.createHistoryServerArchivist(configuration, webMonitorEndpoint);dispatcher = createDispatcher(configuration,rpcService,highAvailabilityServices,resourceManager.getSelfGateway(ResourceManagerGateway.class),blobServer,heartbeatServices,jobManagerMetricGroup,metricRegistry.getMetricQueryServicePath(),archivedExecutionGraphStore,this,webMonitorEndpoint.getRestBaseUrl(),historyServerArchivist);LOG.debug("Starting ResourceManager.");resourceManager.start();resourceManagerRetrievalService.start(resourceManagerGatewayRetriever);LOG.debug("Starting Dispatcher.");dispatcher.start();dispatcherLeaderRetrievalService.start(dispatcherGatewayRetriever);}}從上述代碼里可以發現,AM里面包含兩個重要的全新組件:ResourceManager和Dispatcher
?
在FLIP6的改進下,Resource這個全新的角色定義如下:
The main tasks of the ResourceManager are
-
Acquire new TaskManager?(or slots) by starting containers, or allocating them to a job
-
Giving failure notifications?to JobManagers and TaskManagers
-
Caching TaskManagers?(containers) to be reused, releasing TaskManagers (containers) that are unused for a certain period.
大體來說就是由ResourceManager負責和YARN集群進行資源申請上的溝通,并給指定JobManager分配特定
?
aa
在yarn模式下,ResourceManager對應的實現類為YarnResourceManager,在這個類的initialize方法中,我們可以發現它實例化了兩個client,resourceManagerClient和nodeManagerClient,這兩個客戶端分別包含了Yarn框架的AMRMClientAsync和NMClient,分別用來負責和Yarn的ResourceManager和NodeManager通信。
@Overrideprotected void initialize() throws ResourceManagerException {try {resourceManagerClient = createAndStartResourceManagerClient(yarnConfig,yarnHeartbeatIntervalMillis,webInterfaceUrl);} catch (Exception e) {throw new ResourceManagerException("Could not start resource manager client.", e);}nodeManagerClient = createAndStartNodeManagerClient(yarnConfig);} View Code?
關于Dispatcher的定義如下,它取代了以前由jobManager負責的提交job給集群的工作,并且預期將來可以由一個dispatcher提交任務給多個集群。
The new design includes the concept of a?Dispatcher. The dispatcher accepts job submissions from clients and starts the jobs on their behalf on a cluster manager.
The dispatcher is introduced because:
-
Some cluster managers need a central job spawning and monitoring instance
-
It subsumes the role of the standalone JobManager, waiting for jobs to be submitted
在本文的條件下,Dispatcher具體的實現類為MiniDispatcher,在dispatcher.start();調用后,整個調用鏈經過了
leaderElectionService.start(this)-> ZooKeeperLeaderElectionService.start-> ZooKeeperLeaderElectionService.isLeader-> Dispatcher.grantLeadership-> tryAcceptLeadershipAndRunJobs-> runJob-> createJobManagerRunner調到了DisPatcher的createJobManagerRunner方法。
private CompletableFuture<JobManagerRunner> createJobManagerRunner(JobGraph jobGraph) {final RpcService rpcService = getRpcService();final CompletableFuture<JobManagerRunner> jobManagerRunnerFuture = CompletableFuture.supplyAsync(CheckedSupplier.unchecked(() ->jobManagerRunnerFactory.createJobManagerRunner(ResourceID.generate(),jobGraph,configuration,rpcService,highAvailabilityServices,heartbeatServices,blobServer,jobManagerSharedServices,new DefaultJobManagerJobMetricGroupFactory(jobManagerMetricGroup),fatalErrorHandler)),rpcService.getExecutor());return jobManagerRunnerFuture.thenApply(FunctionUtils.uncheckedFunction(this::startJobManagerRunner));}
上述代碼可以分為兩個部分,第一部分經過DefaultJobManagerRunnerFactory.createJobManagerRunner->new JobManagerRunner->new? ?JobMaster初始化了JobMaster對象。
第二部分經過
startJobManagerRunner-> JobManagerRunner.start-> ZooKeeperLeaderElectionService.start-> ZooKeeperLeaderElectionService.isLeader->JobManagerRunner.grantLeadership-> verifyJobSchedulingStatusAndStartJobManager->
jobMaster.start-> startJobExecution-> private Acknowledge startJobExecution(JobMasterId newJobMasterId) throws Exception {validateRunsInMainThread();checkNotNull(newJobMasterId, "The new JobMasterId must not be null.");if (Objects.equals(getFencingToken(), newJobMasterId)) {log.info("Already started the job execution with JobMasterId {}.", newJobMasterId);return Acknowledge.get();}setNewFencingToken(newJobMasterId);startJobMasterServices();log.info("Starting execution of job {} ({})", jobGraph.getName(), jobGraph.getJobID());resetAndScheduleExecutionGraph();return Acknowledge.get();}private void startJobMasterServices() throws Exception {// start the slot pool make sure the slot pool now accepts messages for this leaderslotPool.start(getFencingToken(), getAddress());//TODO: Remove once the ZooKeeperLeaderRetrieval returns the stored address upon start// try to reconnect to previously known leaderreconnectToResourceManager(new FlinkException("Starting JobMaster component."));// job is ready to go, try to establish connection with resource manager// - activate leader retrieval for the resource manager// - on notification of the leader, the connection will be established and// the slot pool will start requesting slotsresourceManagerLeaderRetriever.start(new ResourceManagerLeaderListener());}
JobMaster首先調用startJobMasterServices進行連接flink resource manager ,啟動jobmanager服務并注冊等操作。然后通過resetAndScheduleExecutionGraph執行任務資源的初始化申請。resetAndScheduleExecutionGraph方法首先調用createAndRestoreExecutionGraph生成了整個任務的executiongraph,然后通過
scheduleExecutionGraph-> ExecutionGraph.scheduleForExecution-> scheduleEager-> ExecutionJobVertex.allocateResourcesForAll-> Execution.allocateAndAssignSlotForExecution-> ProviderAndOwner.allocateSlot-> SlotPool.allocateSlot-> allocateMultiTaskSlot提出對任務slot資源的申請
SlotPool.requestSlotFromResourceManager-> ResourceManager.requestSlot-> SlotManager.registerSlotRequest-> internalRequestSlot->ResourceActionsImpl.allocateResource-> YarnResourceManager.startNewWorker->
申請啟動新的TaskManager
@Overridepublic void startNewWorker(ResourceProfile resourceProfile) {log.info("startNewWorker");// Priority for worker containers - priorities are intra-application//TODO: set priority according to the resource allocatedPriority priority = Priority.newInstance(generatePriority(resourceProfile));int mem = resourceProfile.getMemoryInMB() < 0 ? defaultTaskManagerMemoryMB : resourceProfile.getMemoryInMB();int vcore = resourceProfile.getCpuCores() < 1 ? defaultCpus : (int) resourceProfile.getCpuCores();Resource capability = Resource.newInstance(mem, vcore);requestYarnContainer(capability, priority);}private void requestYarnContainer(Resource resource, Priority priority) {resourceManagerClient.addContainerRequest(new AMRMClient.ContainerRequest(resource, null, null, priority));// make sure we transmit the request fast and receive fast news of granted allocations resourceManagerClient.setHeartbeatInterval(FAST_YARN_HEARTBEAT_INTERVAL_MS);numPendingContainerRequests++;log.info("Requesting new TaskExecutor container with resources {}. Number pending requests {}.",resource,numPendingContainerRequests);} View Code?
?上述代碼就是flink resourcemanager 通過yarn客戶端與yarn通信申請taskmanager部分代碼
?
@Overridepublic void onContainersAllocated(List<Container> containers) {log.info("onContainersAllocated");runAsync(() -> {for (Container container : containers) {log.info("Received new container: {} - Remaining pending container requests: {}",container.getId(),numPendingContainerRequests);if (numPendingContainerRequests > 0) {numPendingContainerRequests--;final String containerIdStr = container.getId().toString();final ResourceID resourceId = new ResourceID(containerIdStr);workerNodeMap.put(resourceId, new YarnWorkerNode(container));try {// Context information used to start a TaskExecutor Java processContainerLaunchContext taskExecutorLaunchContext = createTaskExecutorLaunchContext(container.getResource(),containerIdStr,container.getNodeId().getHost());nodeManagerClient.startContainer(container, taskExecutorLaunchContext);} catch (Throwable t) {log.error("Could not start TaskManager in container {}.", container.getId(), t);// release the failed containerworkerNodeMap.remove(resourceId);resourceManagerClient.releaseAssignedContainer(container.getId());// and ask for a new onerequestYarnContainer(container.getResource(), container.getPriority());}} else {// return the excessive containerslog.info("Returning excess container {}.", container.getId());resourceManagerClient.releaseAssignedContainer(container.getId());}}// if we are waiting for no further containers, we can go to the// regular heartbeat intervalif (numPendingContainerRequests <= 0) {resourceManagerClient.setHeartbeatInterval(yarnHeartbeatIntervalMillis);}});}
am客戶端在taskmanager的客戶端里會設置啟動的主類org.apache.flink.yarn.YarnTaskExecutorRunner
?
轉載于:https://www.cnblogs.com/dongxiao-yang/p/9884516.html
總結
以上是生活随笔為你收集整理的flink on yarn部分源码解析 (FLIP-6 new mode)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Java课程03总结
- 下一篇: 14种常见HTTP状态码