bzoj 3209 数位DP+欧拉定理
生活随笔
收集整理的這篇文章主要介紹了
bzoj 3209 数位DP+欧拉定理
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
?
枚舉1的個數,統計有那么多1的數的個數
?
1 /************************************************************** 2 Problem: 3209 3 User: idy002 4 Language: C++ 5 Result: Accepted 6 Time:0 ms 7 Memory:844 kb 8 ****************************************************************/ 9 10 #include <cstdio> 11 #define Mod 10000007 12 #define Phi 9988440 13 14 typedef long long dnt; 15 16 dnt n; 17 dnt dp[50][2][51]; 18 int tb; 19 20 void dodp() { 21 for( tb=49; tb>=0; tb-- ) 22 if( (n>>tb)&1 ) break; 23 dp[tb][1][1] = 1; 24 dp[tb][0][0] = 1; 25 for( int b=tb-1; b>=0; b-- ) { 26 for( int c=0; c<=tb-b+1; c++ ) { 27 dp[b][1][c] = dp[b+1][1][c-((n>>b)&1)]; 28 dp[b][0][c] = (dp[b+1][0][c] + dp[b+1][0][c-1]) % Phi; 29 if( (n>>b)&1 ) dp[b][0][c] = (dp[b][0][c] + dp[b+1][1][c]) % Phi; 30 } 31 } 32 } 33 dnt mpow( dnt a, dnt b ) { 34 dnt rt; 35 for( rt=1; b; b>>=1,a=(a*a)%Mod ) 36 if( b&1 ) rt=(rt*a)%Mod; 37 return rt; 38 } 39 int main() { 40 scanf( "%lld", &n ); 41 dodp(); 42 dnt ans = 1; 43 for( int c=2; c<=tb+1; c++ ) 44 ans = (ans * mpow(c,dp[0][1][c]+dp[0][0][c])) % Mod; 45 printf( "%lld\n", ans ); 46 } View Code?
轉載于:https://www.cnblogs.com/idy002/p/4557172.html
總結
以上是生活随笔為你收集整理的bzoj 3209 数位DP+欧拉定理的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: XTUOJ 1206 Dormitory
- 下一篇: C++ 画星号图形——空心矩形(核心代码