武汉大学2010年数学分析试题解答
武漢大學2010年數學分析試題解答
一、 1、解 $\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln {{\left( 1+x \right)}^{\frac{1}{x}}}-1}{x}$$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{\ln \left( 1+x \right)}{x}-1}{x}$$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln \left( 1+x \right)-x}{{{x}^{2}}}$$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{1}{1+x}-1}{2x}$$=-\frac{1}{2}\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{1+x}=-\frac{1}{2}$.
2、? 解 $\sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+1}}\le \sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{k}}}\le \sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{n}}}$,
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+1}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+1}\sum\limits_{k=1}^{n}{\frac{1}{n}{{2}^{{}^{k}/{}_{n}}}}=\int_{0}^{1}{{{2}^{x}}dx}$$=\left. \left( \frac{1}{\ln 2}{{2}^{x}} \right) \right|_{0}^{1}=\frac{1}{\ln 2}$,
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{n}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+\frac{1}{n}}\sum\limits_{k=1}^{n}{\frac{1}{n}{{2}^{{}^{k}/{}_{n}}}}=\int_{0}^{1}{{{2}^{x}}dx}=\frac{1}{\ln 2}$,所以$\underset{n\to \infty }{\mathop{\lim }}\,\left( \frac{{{2}^{{}^{1}/{}_{n}}}}{n+1}+\frac{{{2}^{{}^{2}/{}_{n}}}}{n+\frac{1}{2}}+\cdots +\frac{{{2}^{{}^{n}/{}_{n}}}}{n+\frac{1}{n}} \right)=\frac{1}{\ln 2}$.
3、? 解:
$\int{\frac{dx}{1+\tan x}}=\int{\frac{\cos x}{\cos x+\sin x}}dx=\frac{1}{2}\int{\frac{\left( \cos x+\sin x \right)+\left( \cos x-\sin x \right)}{\cos x+\sin x}}dx$
$=\frac{1}{2}x+\frac{1}{2}\ln \left| \sin x+\cos x \right|+C$.
4、 解 :
設$G(x,\alpha )=\int\limits_{x-2\alpha }^{x+3\alpha }{\cos ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy$,則
$F(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{dx\int\limits_{x-2\alpha }^{x+3\alpha }{\cos ({{x}^{2}}}}+{{y}^{2}}+{{\alpha }^{2}})dy=\int\limits_{0}^{{{e}^{\alpha }}}{G(x,\alpha )dx}$
于是
$F'(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{{{G}_{\alpha }}(x,\alpha )dx+{{e}^{\alpha }}}G({{e}^{\alpha }},\alpha )$
而
${{G}_{\alpha }}(x,\alpha )=-2\alpha \int\limits_{x-2\alpha }^{x+3\alpha }{\sin ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy+3\sin (2{{x}^{2}}+9{{\alpha }^{2}}+6ax)+2\sin (2{{x}^{2}}+4{{\alpha }^{2}}-4\alpha x)$于是
$F'(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{[-2\alpha \int\limits_{x-2\alpha }^{x+3\alpha }{\sin ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy+3\sin (2{{x}^{2}}+9{{\alpha }^{2}}+6ax)+2\sin (2{{x}^{2}}+4{{\alpha }^{2}}-4\alpha x)]dx}$$+{{e}^{\alpha }}\int\limits_{{{e}^{\alpha }}-2\alpha }^{{{e}^{\alpha }}+3\alpha }{\cos ({{e}^{2\alpha }}}+{{y}^{2}}+{{\alpha }^{2}})dy$
5、 解 $\iiint\limits_{V}{{{e}^{x}}{{y}^{2}}{{z}^{3}}dxdydz}$$=\int_{0}^{1}{{{e}^{x}}dx\int_{0}^{x}{{{y}^{2}}dy\int_{0}^{xy}{{{z}^{3}}dz}}}$$=\int_{0}^{1}{{{e}^{x}}dx\int_{0}^{x}{{{y}^{2}}\frac{1}{4}{{x}^{4}}{{y}^{4}}dy}}$
$=\frac{1}{4}\frac{1}{7}\int_{0}^{1}{{{x}^{11}}{{e}^{x}}dx}=\frac{1}{28}\int_{0}^{1}{{{x}^{11}}{{e}^{x}}dx}$ $=1425600-\frac{7342285e}{14}$,(多次分部積)。
$I(m)=\int_{0}^{1}{{{x}^{m}}{{e}^{x}}dx}=e-mI(m-1) $ 。
二、證明
方法一(1)當 $a>\frac{1}{4}$時,${{x}_{1}}\ge 0$,${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$,
?因為$|{{x}_{n+1}}-{{x}_{n}}|=|\sqrt{a+{{x}_{n}}}-\sqrt{a+{{x}_{n-1}}}|$
$=\frac{1}{\sqrt{a+{{x}_{n}}}+\sqrt{a+{{x}_{n-1}}}}|{{x}_{n}}-{{x}_{n-1}}|$\le \frac{1}{2\sqrt{a}}|{{x}_{n}}-{{x}_{n-1}}|$,$n=2,3,\cdots$,
于是得壓縮序列$\{{{x}_{n}}\}$是收斂的,設$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A$,顯然$A\ge \sqrt{a}$;
在${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$兩邊令$n\to \infty $取極限得到$A=\sqrt{a+A}$,
從而${{A}^{2}}-A-a=0$,解得$A=\frac{1\pm \sqrt{1+4a}}{2}$,因為$A\ge \sqrt{a}$,故$A=\frac{1+\sqrt{1+4a}}{2}$ .
$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}$? ;
? (2)當 $0<a\le \frac{1}{4}$時${{x}_{1}}=\sqrt{a}$,${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$,
得${{x}_{n}}\ge \sqrt{a}$,${{x}_{2}}\ge {{x}_{1}}$,${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$,由此推出$\{{{x}_{n}}\}$單調遞增,
$f(x)=\sqrt{a+x}$單調遞增,令$A=\frac{1+\sqrt{1+4a}}{2}$,則有$f(A)=A$,
${{x}_{1}}<A=\frac{1+\sqrt{1+4a}}{2}$,由此得${{x}_{n}}<A=\frac{1+\sqrt{1+4a}}{2}$,
$\{{{x}_{n}}\}$單調遞增有界,設$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A$,顯然$A\ge \sqrt{a}$;
在${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$兩邊令$n\to \infty$取極限得到$A=\sqrt{a+A}$,
從而${{A}^{2}}-A-a=0$,解得$A=\frac{1\pm \sqrt{1+4a}}{2}$,因為$A\ge \sqrt{a}$,故\[A=\frac{1+\sqrt{1+4a}}{2}$ .
$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}$
方法二? 令$A=\frac{1+\sqrt{1+4a}}{2}$,則有$A=\frac{1+\sqrt{1+4a}}{2}>1$,${{x}_{n+1}}^{2}=a+{{x}_{n}}$,${{A}^{2}}=a+A$,
從而$|{{x}_{n+1}}-A|=\frac{|{{x}_{n}}-A|}{{{x}_{n}}+A}\le \frac{1}{A}|{{x}_{n}}-A|\le \cdots \le \frac{1}{{{A}^{n}}}|{{x}_{1}}-A|$,
于是$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}$。
?
?
三、 證明 令$F(x)=xf(x) $,由積分中值定理,存在${{\xi }_{1}}\in \left( 0,\frac{1}{2} \right) $,使得
$f(2)=\int_{0}^{\frac{1}{2}}{xf\left( x \right)dx}=\frac{1}{2}{{\xi }_{1}}f({{\xi }_{1}})$,于是有$F(2)=2f(2)={{\xi }_{1}}f({{\xi }_{1}})=F({{\xi }_{1}})$,
由羅爾中值定理,得存在$\xi \in \left( 0,2 \right) $,使得${F}'(\xi )=0$,即 $f\left( \xi? \right)+\xi {f}'\left( \xi? \right)=0$? 。
四、 ${{u}_{x}}=v+x{{v}_{x}}+y{\varphi }'\left( v \right){{v}_{x}}+{\psi }'\left( v \right){{v}_{x}}=v$,${{u}_{xx}}={{v}_{x}}$,${{u}_{xy}}={{v}_{y}}$,
${{u}_{y}}=x{{v}_{y}}+\varphi \left( v \right)+y{\varphi }'\left( v \right){{v}_{y}}+{\psi }'\left( v \right){{v}_{y}}=\varphi \left( v \right) $,${{u}_{yy}}={\varphi }'\left( v \right){{v}_{y}}$,${{u}_{yx}}={\varphi }'\left( v \right){{v}_{x}}$;
于是${{u}_{xx}}={{v}_{x}}$,${{u}_{yy}}={\varphi }'\left( v \right){{v}_{y}}$,${{u}_{xy}}={{v}_{y}}$,${{u}_{yx}}={\varphi }'\left( v \right){{v}_{x}}$,
$\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}\cdot \frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}-{{\left( \frac{{{\partial }^{2}}u}{\partial x\partial y} \right)}^{2}}={{v}_{x}}{\varphi }'(v){{v}_{y}}-{{u}_{xy}}\cdot {{u}_{yx}}$ $={{v}_{x}}{\varphi }'(v){{v}_{y}}-{{v}_{y}}{\varphi }'(v){{v}_{x}}=0$。
五、 解? 兩曲面的交線為${{x}^{2}}+{{y}^{2}}={{a}^{2}},z=a$,$D=\{(x,y):{{x}^{2}}+{{y}^{2}}\le {{a}^{2}}\}$,
${{S}_{1}}:z=2a-\sqrt{{{x}^{2}}+{{y}^{2}}},(x,y)\in D$;${{S}_{2}}:z=\frac{1}{a}({{x}^{2}}+{{y}^{2}}),(x,y)\in D$,
$d\sigma =\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}dxdy$,曲面的面積
${{S}_{1}}=\iint\limits_{D}{\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}}dxdy=\iint\limits_{D}{\sqrt{2}}dxdy=\sqrt{2}\pi {{a}^{2}}$,
${{S}_{2}}=\iint\limits_{D}{\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}}dxdy$$=\iint\limits_{D}{\frac{\sqrt{{{a}^{2}}+4{{x}^{2}}+4{{y}^{2}}}}{a}}dxdy$$=\int_{0}^{2\pi }ze8trgl8bvbq\theta \int_{0}^{a}{\frac{\sqrt{{{a}^{2}}+4{{r}^{2}}}}{a}}\cdot rdr$
$=2\pi \frac{1}{a}\frac{1}{3}\frac{1}{4}{{({{a}^{2}}+4{{r}^{2}})}^{{}^{3}/{}_{2}}}|_{0}^{a}$$=\frac{\pi (5\sqrt{5}-1){{a}^{2}}}{6}$ 。
則所求曲面的面積為$S={{S}_{1}}+{{S}_{2}}=\sqrt{2}\pi {{a}^{2}}+\frac{\pi (5\sqrt{5}-1){{a}^{2}}}{6}$。
六、證明 對任意$a>0$,當$x\ge 1+a$時,設${{u}_{n}}\left( x \right)=\frac{\ln \left( 1+nx \right)}{n{{x}^{n}}}$,
$0<{{u}_{n}}\left( x \right)\le \frac{nx}{n{{x}^{n}}}=\frac{1}{{{x}^{n-1}}}\le \frac{1}{{{\left( 1+a \right)}^{n-1}}}$,而$\sum\limits_{n=1}^{\infty }{\frac{1}{{{\left( 1+a \right)}^{n-1}}}}$收斂,所以$\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} $在$x\in \left[ 1+a,+\infty? \right) $上一致收斂;由${{u}_{n}}\left( x \right) $在$\left[ 1+a,+\infty? \right) $上連續,所以$f\left( x \right)=\sum\limits_{n=1}^{\infty }{\frac{\ln \left( 1+nx \right)}{n{{x}^{n}}}}$在$\left[ 1+a,+\infty? \right) $上連續,由$a>0$的任意性,知$f\left( x \right) $在$\left( 1,+\infty? \right) $上連續;由${{u}_{n}}\left( 1 \right)=\frac{\ln \left( 1+n \right)}{n}>\frac{1}{n},(n>2) $,顯然$\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( 1 \right)} $發散,所以$\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} $在$\left( 1,+\infty? \right) $不一致收斂.
七、設$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$.證明(1) 設$f(x,u)={{e}^{-{{x}^{2}}}}\cos ux$,則有$f(x,u) $在$ [0,+\infty )\times (-\infty ,+\infty ) $上連續,且有$|f(x,u)|\le {{e}^{-{{x}^{2}}}}$,而$\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx$收斂,根據魏爾斯特拉斯判別法,積分$\int_{0}^{+\infty }{f(x,u)}dx$$ (-\infty ,+\infty ) $上一致收斂,所以$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$的定義域為$ (-\infty ,+\infty ) $;
(2) $f(x,u) $,$\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u) $在$ [0,+\infty )\times (-\infty ,+\infty ) $上連續,且有$|f(x,u)|\le {{e}^{-{{x}^{2}}}}$,$|\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)|\le {{x}^{k}}{{e}^{-{{x}^{2}}}}$,而$\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx$,$\int_{0}^{+\infty }{{{x}^{k}}{{e}^{-{{x}^{2}}}}}dx$收斂,根據魏爾斯特拉斯判別法,積分$\int_{0}^{+\infty }{f(x,u)}dx$,$\int_{0}^{+\infty }{\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)}dx$均在$ (-\infty ,+\infty ) $上一致收斂,$k=1,2,\cdots $
于是$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$在$ (-\infty ,+\infty ) $上連續可微,且$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$在$ (-\infty ,+\infty ) $上具任意階的連續導數;${{\varphi }^{(k)}}(u)=\int_{0}^{+\infty }{\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)}dx$,$k=1,2,\cdots $;
(3)?${\varphi }'(u)=\int_{0}^{+\infty }{\frac{\partial }{\partial u}({{e}^{-{{x}^{2}}}}}\cos ux)dx=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}(-x\sin ux)dx$
$=\int_{0}^{+\infty }{\sin ux}d(\frac{1}{2}{{e}^{-{{x}^{2}}}})$$=-\int_{0}^{+\infty }{\frac{1}{2}{{e}^{-{{x}^{2}}}}(}u\cos ux)dx$$=-\frac{u}{2}\phi (u) $,由此得$ [\ln \phi (u){]}'=-\frac{u}{2}$,積分得$\ln \phi (u)=-\frac{{{u}^{2}}}{4}+{{C}_{1}}$從而有$\phi (u)=C{{e}^{-\frac{{{u}^{2}}}{4}}}$,\[C=\phi (0)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx=\frac{\sqrt{\pi }}{2}$,
故$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$$=\frac{\sqrt{\pi }}{2}{{e}^{-\frac{{{u}^{2}}}{4}}}$? .
八、證明 設$D=\{(x,y,z):\frac{{{\left( x-3 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}\le 1,z=0\}$,$n=(0,0,1) $$D$與$\Sigma$所圍的區域為$V$,顯然點$ (0,0,0) $在$V$的外部,曲面$\sum$沒有罩著點$ (0,0,0) $。$div(\frac{1}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}(x,y,z))=0$,利用高斯公式,得
$\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=\iint\limits_{D}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=0$.此題出的錯誤。
應把曲面方程改為使$D$與$\Sigma $所圍的區域$V$含點$ (0,0,0) $。曲面$\sum$應罩著點$ (0,0,0) $。改為:$\sum $為$1-\frac{z}{5}=\frac{{{\left( x-2 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}$($z\ge 0$)的上側.求證$\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=2\pi $.
證明? 取$\varepsilon >0$充分小,${{S}_{\varepsilon }}:{{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{\varepsilon }^{2}}(z\ge 0) $,${{D}_{\varepsilon }}=(x,y,z):{{x}^{2}}+{{y}^{2}}\ge {{\varepsilon }^{2}},\frac{{{\left( x-2 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}\le 1,z=0\}$,$div(\frac{1}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}(x,y,z))=0$
${{D}_{\varepsilon }}$,${{S}_{\varepsilon }}$與$\Sigma $所圍的區域為${{V}_{\varepsilon }}$,利用高斯公式,得
$\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=\iint\limits_{{{S}_{\varepsilon }}+{{D}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}$
$=\iint\limits_{{{S}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}+\iint\limits_{{{D}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}$
$=\frac{1}{{{\varepsilon }^{3}}}\iint\limits_{{{S}_{\varepsilon }}}{xdydz+ydzdx+zdxdy}+0$
$=\frac{1}{{{\varepsilon }^{3}}}\iint\limits_{{{S}_{\varepsilon }}}{\frac{1}{\varepsilon }}({{x}^{2}}+{{y}^{2}}+{{z}^{2}})dS$
$=\frac{1}{{{\varepsilon }^{2}}}\iint\limits_{{{S}_{\varepsilon }}}{dS}=\frac{1}{{{\varepsilon }^{2}}}\frac{1}{2}4\pi {{\varepsilon }^{2}}=2\pi $ 。
九、證明? (1)對$\forall {{x}_{1}},{{x}_{2}}\in [0,+\infty ) $,成立$|\sqrt{{{x}_{2}}}-\sqrt{{{x}_{1}}}|\le \sqrt{|{{x}_{2}}-{{x}_{1}}|}$,$\left| f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right) \right|\le \sqrt{|{{x}_{2}}-{{x}_{1}}|}$,由此知$f\left( x \right)=\sqrt{x}$在$\left[ 0,+\infty? \right) $上是一致連續的;
(2)?? 因為$f\left( x \right)=\sqrt{x}$在$\left( 0,+\infty? \right) $內可導,導函數${f}'\left( x \right)=\frac{1}{2\sqrt{x}}$在$\left( 0,+\infty? \right) $內無界,
所以$f\left( x \right)=\sqrt{x}$在$\left[ 0,+\infty? \right) $上不是$Lipschitz$連續的。 注:設$p\ge 1$,則對$\forall {{x}_{1}},{{x}_{2}}\in [0,+\infty ) $,
成立$|{{x}_{2}}^{\frac{1}{p}}-{{x}_{1}}^{\frac{1}{p}}|\le |{{x}_{2}}-{{x}_{1}}{{|}^{\frac{1}{p}}}$。(這個結果,用簡單初等方法就能證出。)
?
轉載于:https://www.cnblogs.com/Colgatetoothpaste/p/3670086.html
《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀總結
以上是生活随笔為你收集整理的武汉大学2010年数学分析试题解答的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 通用寄存器的专门用途
- 下一篇: PHP创建XML文件讲解