超过 150 个最佳机器学习,NLP 和 Python教程
作者:chen_h
微信號 & QQ:862251340
微信公眾號:coderpai
我的博客:請點擊這里
我把這篇文章分為四個部分:機器學習,NLP,Python 和 數學。我在每一部分都會包含一些關鍵主題,但是網上資料太廣泛了,所以我不可能包括每一個可能的主題。
如果你發現好的教程,請告訴我。在這篇文章中,我把每個主題的教程數量都是控制在五到六個,這些精選出來的教程都是非常重要的。每一個鏈接都會鏈接到別的鏈接,從而導致很多新的教程。
Machine Learning
Machine Learning is Fun! (medium.com/@ageitgey)
Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)
A Gentle Guide to Machine Learning (monkeylearn.com)
Which machine learning algorithm should I use? (sas.com)
Activation and Loss Functions
Sigmoid neurons (neuralnetworksanddeeplearning.com)
What is the role of the activation function in a neural network? (quora.com)
[Comprehensive list of activation functions in neural networks with pros/cons]12
Activation functions and it’s types-Which is better? (medium.com)
Making Sense of Logarithmic Loss (exegetic.biz)
Loss Functions (Stanford CS231n)
L1 vs. L2 Loss function (rishy.github.io)
The cross-entropy cost function (neuralnetworksanddeeplearning.com)
Bias
Role of Bias in Neural Networks (stackoverflow.com)
Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)
What is bias in artificial neural network? (quora.com)
Perceptron
Perceptrons (neuralnetworksanddeeplearning.com)
The Perception (natureofcode.com)
Single-layer Neural Networks (Perceptrons) (dcu.ie)
From Perceptrons to Deep Networks (toptal.com)
Regression
Introduction to linear regression analysis (duke.edu)
Linear Regression (ufldl.stanford.edu)
Linear Regression (readthedocs.io)
Logistic Regression (readthedocs.io)
[Simple Linear Regression Tutorial for Machine Learning]29
[Logistic Regression Tutorial for Machine Learning]30
Softmax Regression (ufldl.stanford.edu)
Gradient Descent
Learning with gradient descent (neuralnetworksanddeeplearning.com)
Gradient Descent (iamtrask.github.io)
How to understand Gradient Descent algorithm (kdnuggets.com)
[An overview of gradient descent optimization algorithms]35
Optimization: Stochastic Gradient Descent (Stanford CS231n)
Generative Learning
Generative Learning Algorithms (Stanford CS229)
A practical explanation of a Naive Bayes classifier (monkeylearn.com)
Support Vector Machines
An introduction to Support Vector Machines (SVM) (monkeylearn.com)
Support Vector Machines (Stanford CS229)
Linear classification: Support Vector Machine, Softmax (Stanford 231n)
Backpropagation
Yes you should understand backprop (medium.com/@karpathy)
Can you give a visual explanation for the back propagation algorithm for neural networks? (github.com/rasbt)
[How the backpropagation algorithm works]45
Backpropagation Through Time and Vanishing Gradients (wildml.com)
[A Gentle Introduction to Backpropagation Through Time]47
Backpropagation, Intuitions (Stanford CS231n)
Deep Learning
Deep Learning in a Nutshell (nikhilbuduma.com)
A Tutorial on Deep Learning (Quoc V. Le)
What is Deep Learning? (machinelearningmastery.com)
What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)
Optimization and Dimensionality Reduction
Seven Techniques for Data Dimensionality Reduction (knime.org)
Principal components analysis (Stanford CS229)
Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
How to train your Deep Neural Network (rishy.github.io)
Long Short Term Memory(LSTM)
[A Gentle Introduction to Long Short-Term Memory Networks by the Experts]57
Understanding LSTM Networks (colah.github.io)
Exploring LSTMs (echen.me)
Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)
Convolutional Neural Networks (CNNs)
Introducing convolutional networks (neuralnetworksanddeeplearning.com)
[Deep Learning and Convolutional Neural Networks]62
Conv Nets: A Modular Perspective (colah.github.io)
Understanding Convolutions (colah.github.io)
Recurrent Neural Nets (RNNs)
Recurrent Neural Networks Tutorial (wildml.com)
Attention and Augmented Recurrent Neural Networks (distill.pub)
[The Unreasonable Effectiveness of Recurrent Neural Networks]68
A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)
Reinforcement Learning
[Simple Beginner’s guide to Reinforcement Learning & its implementation]70
A Tutorial for Reinforcement Learning (mst.edu)
Learning Reinforcement Learning (wildml.com)
Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)
Generative Adversarial Networks (GANs)
What’s a Generative Adversarial Network? (nvidia.com)
[Abusing Generative Adversarial Networks to Make 8-bit Pixel Art]75
An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien.com)
Generative Adversarial Networks for Beginners (oreilly.com)
Multi-task Learning
[An Overview of Multi-Task Learning in Deep Neural Networks]78
NLP
A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
The Definitive Guide to Natural Language Processing (monkeylearn.com)
Introduction to Natural Language Processing (algorithmia.com)
Natural Language Processing Tutorial (vikparuchuri.com)
Natural Language Processing (almost) from Scratch (arxiv.org)
Deep Learning and NLP
Deep Learning applied to NLP (arxiv.org)
Deep Learning for NLP (without Magic) (Richard Socher)
Understanding Convolutional Neural Networks for NLP (wildml.com)
Deep Learning, NLP, and Representations (colah.github.io)
Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
[Understanding Natural Language with Deep Neural Networks Using Torch]89
Deep Learning for NLP with Pytorch (pytorich.org)
Word Vectors
Bag of Words Meets Bags of Popcorn (kaggle.com)
On word embeddings Part I, Part II, Part III (sebastianruder.com)
The amazing power of word vectors (acolyer.org)
word2vec Parameter Learning Explained (arxiv.org)
Word2Vec Tutorial?—?The Skip-Gram Model, [Negative Sampling]98
Encoder-Decoder
Attention and Memory in Deep Learning and NLP (wildml.com)
Sequence to Sequence Models (tensorflow.org)
Sequence to Sequence Learning with Neural Networks (NIPS 2014)
Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)
[How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers]103
tf-seq2seq (google.github.io)
Python
7 Steps to Mastering Machine Learning With Python (kdnuggets.com)
An example machine learning notebook (nbviewer.jupyter.org)
Examples
[How To Implement The Perceptron Algorithm From Scratch In Python]107
Implementing a Neural Network from Scratch in Python (wildml.com)
A Neural Network in 11 lines of Python (iamtrask.github.io)
[Implementing Your Own k-Nearest Neighbour Algorithm Using Python]110
Demonstration of Memory with a Long Short-Term Memory Network in Python (machinelearningmastery.com)
How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)
[How to Learn to Add Numbers with seq2seq Recurrent Neural Networks]113
Scipy and numpy
Scipy Lecture Notes (scipy-lectures.org)
Python Numpy Tutorial (Stanford CS231n)
An introduction to Numpy and Scipy (UCSB CHE210D)
A Crash Course in Python for Scientists (nbviewer.jupyter.org)
scikit-learn
PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)
scikit-learn Classification Algorithms (github.com/mmmayo13)
scikit-learn Tutorials (scikit-learn.org)
Abridged scikit-learn Tutorials (github.com/mmmayo13)
Tensorflow
Tensorflow Tutorials (tensorflow.org)
Introduction to TensorFlow?—?CPU vs GPU (medium.com/@erikhallst…)
TensorFlow: A primer (metaflow.fr)
RNNs in Tensorflow (wildml.com)
Implementing a CNN for Text Classification in TensorFlow (wildml.com)
How to Run Text Summarization with TensorFlow (surmenok.com)
PyTorch
PyTorch Tutorials (pytorch.org)
A Gentle Intro to PyTorch (gaurav.im)
Tutorial: Deep Learning in PyTorch (iamtrask.github.io)
PyTorch Examples (github.com/jcjohnson)
PyTorch Tutorial (github.com/MorvanZhou)
PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)
Math
Math for Machine Learning (ucsc.edu)
Math for Machine Learning (UMIACS CMSC422)
Linear algebra
An Intuitive Guide to Linear Algebra (betterexplained.com)
A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)
Understanding the Cross Product (betterexplained.com)
Understanding the Dot Product (betterexplained.com)
Linear Algebra for Machine Learning (U. of Buffalo CSE574)
Linear algebra cheat sheet for deep learning (medium.com)
Linear Algebra Review and Reference (Stanford CS229)
Probability
Understanding Bayes Theorem With Ratios (betterexplained.com)
Review of Probability Theory (Stanford CS229)
Probability Theory Review for Machine Learning (Stanford CS229)
Probability Theory (U. of Buffalo CSE574)
Probability Theory for Machine Learning (U. of Toronto CSC411)
Calculus
How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
[How To Understand Derivatives: The Product, Power & Chain Rules]150
Vector Calculus: Understanding the Gradient (betterexplained.com)
Differential Calculus (Stanford CS224n)
Calculus Overview (readthedocs.io)
CoderPai 是一個專注于算法實戰的平臺,從基礎的算法到人工智能算法都有設計。如果你對算法實戰感興趣,請快快關注我們吧。加入AI實戰微信群,AI實戰QQ群,ACM算法微信群,ACM算法QQ群。長按或者掃描如下二維碼,關注 “CoderPai” 微信號(coderpai)
總結
以上是生活随笔為你收集整理的超过 150 个最佳机器学习,NLP 和 Python教程的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 什么是RDD?
- 下一篇: Vue creatElement