3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

java 矩阵计算 加减乘除 反转 分解

發(fā)布時(shí)間:2025/6/15 编程问答 15 豆豆
生活随笔 收集整理的這篇文章主要介紹了 java 矩阵计算 加减乘除 反转 分解 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

矩陣計(jì)算

package Jama;import java.text.NumberFormat; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Locale; import java.text.FieldPosition; import java.io.PrintWriter; import java.io.BufferedReader; import java.io.StreamTokenizer; import Jama.util.*;/**Jama = Java Matrix class. <P>The Java Matrix Class provides the fundamental operations of numericallinear algebra. Various constructors create Matrices from two dimensionalarrays of double precision floating point numbers. Various "gets" and"sets" provide access to submatrices and matrix elements. Several methods implement basic matrix arithmetic, including matrix addition andmultiplication, matrix norms, and element-by-element array operations.Methods for reading and printing matrices are also included. All theoperations in this version of the Matrix Class involve real matrices.Complex matrices may be handled in a future version. <P>Five fundamental matrix decompositions, which consist of pairs or triplesof matrices, permutation vectors, and the like, produce results in fivedecomposition classes. These decompositions are accessed by the Matrixclass to compute solutions of simultaneous linear equations, determinants,inverses and other matrix functions. The five decompositions are: <P><UL><LI>Cholesky Decomposition of symmetric, positive definite matrices.<LI>LU Decomposition of rectangular matrices.<LI>QR Decomposition of rectangular matrices.<LI>Singular Value Decomposition of rectangular matrices.<LI>Eigenvalue Decomposition of both symmetric and nonsymmetric square matrices. </UL> <DL> <DT><B>Example of use:</B></DT> <P> <DD>Solve a linear system A x = b and compute the residual norm, ||b - A x||. <P><PRE>double[][] vals = {{1.,2.,3},{4.,5.,6.},{7.,8.,10.}};Matrix A = new Matrix(vals);Matrix b = Matrix.random(3,1);Matrix x = A.solve(b);Matrix r = A.times(x).minus(b);double rnorm = r.normInf(); </PRE></DD> </DL>@author The MathWorks, Inc. and the National Institute of Standards and Technology. @version 5 August 1998 */public class Matrix implements Cloneable, java.io.Serializable {/* ------------------------Class variables* ------------------------ *//** Array for internal storage of elements.@serial internal array storage.*/private double[][] A;/** Row and column dimensions.@serial row dimension.@serial column dimension.*/private int m, n;/* ------------------------Constructors* ------------------------ *//** Construct an m-by-n matrix of zeros. @param m Number of rows.@param n Number of colums.*/public Matrix (int m, int n) {this.m = m;this.n = n;A = new double[m][n];}/** Construct an m-by-n constant matrix.@param m Number of rows.@param n Number of colums.@param s Fill the matrix with this scalar value.*/public Matrix (int m, int n, double s) {this.m = m;this.n = n;A = new double[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {A[i][j] = s;}}}/** Construct a matrix from a 2-D array.@param A Two-dimensional array of doubles.@exception IllegalArgumentException All rows must have the same length@see #constructWithCopy*/public Matrix (double[][] A) {m = A.length;n = A[0].length;for (int i = 0; i < m; i++) {if (A[i].length != n) {throw new IllegalArgumentException("All rows must have the same length.");}}this.A = A;}/** Construct a matrix quickly without checking arguments.@param A Two-dimensional array of doubles.@param m Number of rows.@param n Number of colums.*/public Matrix (double[][] A, int m, int n) {this.A = A;this.m = m;this.n = n;}/** Construct a matrix from a one-dimensional packed array@param vals One-dimensional array of doubles, packed by columns (ala Fortran).@param m Number of rows.@exception IllegalArgumentException Array length must be a multiple of m.*/public Matrix (double vals[], int m) {this.m = m;n = (m != 0 ? vals.length/m : 0);if (m*n != vals.length) {throw new IllegalArgumentException("Array length must be a multiple of m.");}A = new double[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {A[i][j] = vals[i+j*m];}}}/* ------------------------Public Methods* ------------------------ *//** Construct a matrix from a copy of a 2-D array.@param A Two-dimensional array of doubles.@exception IllegalArgumentException All rows must have the same length*/public static Matrix constructWithCopy(double[][] A) {int m = A.length;int n = A[0].length;Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {if (A[i].length != n) {throw new IllegalArgumentException("All rows must have the same length.");}for (int j = 0; j < n; j++) {C[i][j] = A[i][j];}}return X;}/** Make a deep copy of a matrix*/public Matrix copy () {Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = A[i][j];}}return X;}/** Clone the Matrix object.*/public Object clone () {return this.copy();}/** Access the internal two-dimensional array.@return Pointer to the two-dimensional array of matrix elements.*/public double[][] getArray () {return A;}/** Copy the internal two-dimensional array.@return Two-dimensional array copy of matrix elements.*/public double[][] getArrayCopy () {double[][] C = new double[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = A[i][j];}}return C;}/** Make a one-dimensional column packed copy of the internal array.@return Matrix elements packed in a one-dimensional array by columns.*/public double[] getColumnPackedCopy () {double[] vals = new double[m*n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {vals[i+j*m] = A[i][j];}}return vals;}/** Make a one-dimensional row packed copy of the internal array.@return Matrix elements packed in a one-dimensional array by rows.*/public double[] getRowPackedCopy () {double[] vals = new double[m*n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {vals[i*n+j] = A[i][j];}}return vals;}/** Get row dimension.@return m, the number of rows.*/public int getRowDimension () {return m;}/** Get column dimension.@return n, the number of columns.*/public int getColumnDimension () {return n;}/** Get a single element.@param i Row index.@param j Column index.@return A(i,j)@exception ArrayIndexOutOfBoundsException*/public double get (int i, int j) {return A[i][j];}/** Get a submatrix.@param i0 Initial row index@param i1 Final row index@param j0 Initial column index@param j1 Final column index@return A(i0:i1,j0:j1)@exception ArrayIndexOutOfBoundsException Submatrix indices*/public Matrix getMatrix (int i0, int i1, int j0, int j1) {Matrix X = new Matrix(i1-i0+1,j1-j0+1);double[][] B = X.getArray();try {for (int i = i0; i <= i1; i++) {for (int j = j0; j <= j1; j++) {B[i-i0][j-j0] = A[i][j];}}} catch(ArrayIndexOutOfBoundsException e) {throw new ArrayIndexOutOfBoundsException("Submatrix indices");}return X;}/** Get a submatrix.@param r Array of row indices.@param c Array of column indices.@return A(r(:),c(:))@exception ArrayIndexOutOfBoundsException Submatrix indices*/public Matrix getMatrix (int[] r, int[] c) {Matrix X = new Matrix(r.length,c.length);double[][] B = X.getArray();try {for (int i = 0; i < r.length; i++) {for (int j = 0; j < c.length; j++) {B[i][j] = A[r[i]][c[j]];}}} catch(ArrayIndexOutOfBoundsException e) {throw new ArrayIndexOutOfBoundsException("Submatrix indices");}return X;}/** Get a submatrix.@param i0 Initial row index@param i1 Final row index@param c Array of column indices.@return A(i0:i1,c(:))@exception ArrayIndexOutOfBoundsException Submatrix indices*/public Matrix getMatrix (int i0, int i1, int[] c) {Matrix X = new Matrix(i1-i0+1,c.length);double[][] B = X.getArray();try {for (int i = i0; i <= i1; i++) {for (int j = 0; j < c.length; j++) {B[i-i0][j] = A[i][c[j]];}}} catch(ArrayIndexOutOfBoundsException e) {throw new ArrayIndexOutOfBoundsException("Submatrix indices");}return X;}/** Get a submatrix.@param r Array of row indices.@param j0 Initial column index@param j1 Final column index@return A(r(:),j0:j1)@exception ArrayIndexOutOfBoundsException Submatrix indices*/public Matrix getMatrix (int[] r, int j0, int j1) {Matrix X = new Matrix(r.length,j1-j0+1);double[][] B = X.getArray();try {for (int i = 0; i < r.length; i++) {for (int j = j0; j <= j1; j++) {B[i][j-j0] = A[r[i]][j];}}} catch(ArrayIndexOutOfBoundsException e) {throw new ArrayIndexOutOfBoundsException("Submatrix indices");}return X;}/** Set a single element.@param i Row index.@param j Column index.@param s A(i,j).@exception ArrayIndexOutOfBoundsException*/public void set (int i, int j, double s) {A[i][j] = s;}/** Set a submatrix.@param i0 Initial row index@param i1 Final row index@param j0 Initial column index@param j1 Final column index@param X A(i0:i1,j0:j1)@exception ArrayIndexOutOfBoundsException Submatrix indices*/public void setMatrix (int i0, int i1, int j0, int j1, Matrix X) {try {for (int i = i0; i <= i1; i++) {for (int j = j0; j <= j1; j++) {A[i][j] = X.get(i-i0,j-j0);}}} catch(ArrayIndexOutOfBoundsException e) {throw new ArrayIndexOutOfBoundsException("Submatrix indices");}}/** Set a submatrix.@param r Array of row indices.@param c Array of column indices.@param X A(r(:),c(:))@exception ArrayIndexOutOfBoundsException Submatrix indices*/public void setMatrix (int[] r, int[] c, Matrix X) {try {for (int i = 0; i < r.length; i++) {for (int j = 0; j < c.length; j++) {A[r[i]][c[j]] = X.get(i,j);}}} catch(ArrayIndexOutOfBoundsException e) {throw new ArrayIndexOutOfBoundsException("Submatrix indices");}}/** Set a submatrix.@param r Array of row indices.@param j0 Initial column index@param j1 Final column index@param X A(r(:),j0:j1)@exception ArrayIndexOutOfBoundsException Submatrix indices*/public void setMatrix (int[] r, int j0, int j1, Matrix X) {try {for (int i = 0; i < r.length; i++) {for (int j = j0; j <= j1; j++) {A[r[i]][j] = X.get(i,j-j0);}}} catch(ArrayIndexOutOfBoundsException e) {throw new ArrayIndexOutOfBoundsException("Submatrix indices");}}/** Set a submatrix.@param i0 Initial row index@param i1 Final row index@param c Array of column indices.@param X A(i0:i1,c(:))@exception ArrayIndexOutOfBoundsException Submatrix indices*/public void setMatrix (int i0, int i1, int[] c, Matrix X) {try {for (int i = i0; i <= i1; i++) {for (int j = 0; j < c.length; j++) {A[i][c[j]] = X.get(i-i0,j);}}} catch(ArrayIndexOutOfBoundsException e) {throw new ArrayIndexOutOfBoundsException("Submatrix indices");}}/** Matrix transpose.@return A'*/public Matrix transpose () {Matrix X = new Matrix(n,m);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[j][i] = A[i][j];}}return X;}/** One norm@return maximum column sum.*/public double norm1 () {double f = 0;for (int j = 0; j < n; j++) {double s = 0;for (int i = 0; i < m; i++) {s += Math.abs(A[i][j]);}f = Math.max(f,s);}return f;}/** Two norm@return maximum singular value.*/public double norm2 () {return (new SingularValueDecomposition(this).norm2());}/** Infinity norm@return maximum row sum.*/public double normInf () {double f = 0;for (int i = 0; i < m; i++) {double s = 0;for (int j = 0; j < n; j++) {s += Math.abs(A[i][j]);}f = Math.max(f,s);}return f;}/** Frobenius norm@return sqrt of sum of squares of all elements.*/public double normF () {double f = 0;for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {f = Maths.hypot(f,A[i][j]);}}return f;}/** Unary minus@return -A*/public Matrix uminus () {Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = -A[i][j];}}return X;}/** C = A + B@param B another matrix@return A + B*/public Matrix plus (Matrix B) {checkMatrixDimensions(B);Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = A[i][j] + B.A[i][j];}}return X;}/** A = A + B@param B another matrix@return A + B*/public Matrix plusEquals (Matrix B) {checkMatrixDimensions(B);for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {A[i][j] = A[i][j] + B.A[i][j];}}return this;}/** C = A - B@param B another matrix@return A - B*/public Matrix minus (Matrix B) {checkMatrixDimensions(B);Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = A[i][j] - B.A[i][j];}}return X;}/** A = A - B@param B another matrix@return A - B*/public Matrix minusEquals (Matrix B) {checkMatrixDimensions(B);for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {A[i][j] = A[i][j] - B.A[i][j];}}return this;}/** Element-by-element multiplication, C = A.*B@param B another matrix@return A.*B*/public Matrix arrayTimes (Matrix B) {checkMatrixDimensions(B);Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = A[i][j] * B.A[i][j];}}return X;}/** Element-by-element multiplication in place, A = A.*B@param B another matrix@return A.*B*/public Matrix arrayTimesEquals (Matrix B) {checkMatrixDimensions(B);for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {A[i][j] = A[i][j] * B.A[i][j];}}return this;}/** Element-by-element right division, C = A./B@param B another matrix@return A./B*/public Matrix arrayRightDivide (Matrix B) {checkMatrixDimensions(B);Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = A[i][j] / B.A[i][j];}}return X;}/** Element-by-element right division in place, A = A./B@param B another matrix@return A./B*/public Matrix arrayRightDivideEquals (Matrix B) {checkMatrixDimensions(B);for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {A[i][j] = A[i][j] / B.A[i][j];}}return this;}/** Element-by-element left division, C = A.\B@param B another matrix@return A.\B*/public Matrix arrayLeftDivide (Matrix B) {checkMatrixDimensions(B);Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = B.A[i][j] / A[i][j];}}return X;}/** Element-by-element left division in place, A = A.\B@param B another matrix@return A.\B*/public Matrix arrayLeftDivideEquals (Matrix B) {checkMatrixDimensions(B);for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {A[i][j] = B.A[i][j] / A[i][j];}}return this;}/** Multiply a matrix by a scalar, C = s*A@param s scalar@return s*A*/public Matrix times (double s) {Matrix X = new Matrix(m,n);double[][] C = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {C[i][j] = s*A[i][j];}}return X;}/** Multiply a matrix by a scalar in place, A = s*A@param s scalar@return replace A by s*A*/public Matrix timesEquals (double s) {for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {A[i][j] = s*A[i][j];}}return this;}/** Linear algebraic matrix multiplication, A * B@param B another matrix@return Matrix product, A * B@exception IllegalArgumentException Matrix inner dimensions must agree.*/public Matrix times (Matrix B) {if (B.m != n) {throw new IllegalArgumentException("Matrix inner dimensions must agree.");}Matrix X = new Matrix(m,B.n);double[][] C = X.getArray();double[] Bcolj = new double[n];for (int j = 0; j < B.n; j++) {for (int k = 0; k < n; k++) {Bcolj[k] = B.A[k][j];}for (int i = 0; i < m; i++) {double[] Arowi = A[i];double s = 0;for (int k = 0; k < n; k++) {s += Arowi[k]*Bcolj[k];}C[i][j] = s;}}return X;}/** LU Decomposition@return LUDecomposition@see LUDecomposition*/public LUDecomposition lu () {return new LUDecomposition(this);}/** QR Decomposition@return QRDecomposition@see QRDecomposition*/public QRDecomposition qr () {return new QRDecomposition(this);}/** Cholesky Decomposition@return CholeskyDecomposition@see CholeskyDecomposition*/public CholeskyDecomposition chol () {return new CholeskyDecomposition(this);}/** Singular Value Decomposition@return SingularValueDecomposition@see SingularValueDecomposition*/public SingularValueDecomposition svd () {return new SingularValueDecomposition(this);}/** Eigenvalue Decomposition@return EigenvalueDecomposition@see EigenvalueDecomposition*/public EigenvalueDecomposition eig () {return new EigenvalueDecomposition(this);}/** Solve A*X = B@param B right hand side@return solution if A is square, least squares solution otherwise*/public Matrix solve (Matrix B) {return (m == n ? (new LUDecomposition(this)).solve(B) :(new QRDecomposition(this)).solve(B));}/** Solve X*A = B, which is also A'*X' = B'@param B right hand side@return solution if A is square, least squares solution otherwise.*/public Matrix solveTranspose (Matrix B) {return transpose().solve(B.transpose());}/** Matrix inverse or pseudoinverse@return inverse(A) if A is square, pseudoinverse otherwise.*/public Matrix inverse () {return solve(identity(m,m));}/** Matrix determinant@return determinant*/public double det () {return new LUDecomposition(this).det();}/** Matrix rank@return effective numerical rank, obtained from SVD.*/public int rank () {return new SingularValueDecomposition(this).rank();}/** Matrix condition (2 norm)@return ratio of largest to smallest singular value.*/public double cond () {return new SingularValueDecomposition(this).cond();}/** Matrix trace.@return sum of the diagonal elements.*/public double trace () {double t = 0;for (int i = 0; i < Math.min(m,n); i++) {t += A[i][i];}return t;}/** Generate matrix with random elements@param m Number of rows.@param n Number of colums.@return An m-by-n matrix with uniformly distributed random elements.*/public static Matrix random (int m, int n) {Matrix A = new Matrix(m,n);double[][] X = A.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {X[i][j] = Math.random();}}return A;}/** Generate identity matrix@param m Number of rows.@param n Number of colums.@return An m-by-n matrix with ones on the diagonal and zeros elsewhere.*/public static Matrix identity (int m, int n) {Matrix A = new Matrix(m,n);double[][] X = A.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {X[i][j] = (i == j ? 1.0 : 0.0);}}return A;}/** Print the matrix to stdout. Line the elements up in columns* with a Fortran-like 'Fw.d' style format.@param w Column width.@param d Number of digits after the decimal.*/public void print (int w, int d) {print(new PrintWriter(System.out,true),w,d); }/** Print the matrix to the output stream. Line the elements up in* columns with a Fortran-like 'Fw.d' style format.@param output Output stream.@param w Column width.@param d Number of digits after the decimal.*/public void print (PrintWriter output, int w, int d) {DecimalFormat format = new DecimalFormat();format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US));format.setMinimumIntegerDigits(1);format.setMaximumFractionDigits(d);format.setMinimumFractionDigits(d);format.setGroupingUsed(false);print(output,format,w+2);}/** Print the matrix to stdout. Line the elements up in columns.* Use the format object, and right justify within columns of width* characters.* Note that is the matrix is to be read back in, you probably will want* to use a NumberFormat that is set to US Locale.@param format A Formatting object for individual elements.@param width Field width for each column.@see java.text.DecimalFormat#setDecimalFormatSymbols*/public void print (NumberFormat format, int width) {print(new PrintWriter(System.out,true),format,width); }// DecimalFormat is a little disappointing coming from Fortran or C's printf.// Since it doesn't pad on the left, the elements will come out different// widths. Consequently, we'll pass the desired column width in as an// argument and do the extra padding ourselves./** Print the matrix to the output stream. Line the elements up in columns.* Use the format object, and right justify within columns of width* characters.* Note that is the matrix is to be read back in, you probably will want* to use a NumberFormat that is set to US Locale.@param output the output stream.@param format A formatting object to format the matrix elements @param width Column width.@see java.text.DecimalFormat#setDecimalFormatSymbols*/public void print (PrintWriter output, NumberFormat format, int width) {output.println(); // start on new line.for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {String s = format.format(A[i][j]); // format the numberint padding = Math.max(1,width-s.length()); // At _least_ 1 spacefor (int k = 0; k < padding; k++)output.print(' ');output.print(s);}output.println();}output.println(); // end with blank line.}/** Read a matrix from a stream. The format is the same the print method,* so printed matrices can be read back in (provided they were printed using* US Locale). Elements are separated by* whitespace, all the elements for each row appear on a single line,* the last row is followed by a blank line.@param input the input stream.*/public static Matrix read (BufferedReader input) throws java.io.IOException {StreamTokenizer tokenizer= new StreamTokenizer(input);// Although StreamTokenizer will parse numbers, it doesn't recognize// scientific notation (E or D); however, Double.valueOf does.// The strategy here is to disable StreamTokenizer's number parsing.// We'll only get whitespace delimited words, EOL's and EOF's.// These words should all be numbers, for Double.valueOf to parse.tokenizer.resetSyntax();tokenizer.wordChars(0,255);tokenizer.whitespaceChars(0, ' ');tokenizer.eolIsSignificant(true);java.util.Vector<Double> vD = new java.util.Vector<Double>();// Ignore initial empty lineswhile (tokenizer.nextToken() == StreamTokenizer.TT_EOL);if (tokenizer.ttype == StreamTokenizer.TT_EOF)throw new java.io.IOException("Unexpected EOF on matrix read.");do {vD.addElement(Double.valueOf(tokenizer.sval)); // Read & store 1st row.} while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);int n = vD.size(); // Now we've got the number of columns!double row[] = new double[n];for (int j=0; j<n; j++) // extract the elements of the 1st row.row[j]=vD.elementAt(j).doubleValue();java.util.Vector<double[]> v = new java.util.Vector<double[]>();v.addElement(row); // Start storing rows instead of columns.while (tokenizer.nextToken() == StreamTokenizer.TT_WORD) {// While non-empty linesv.addElement(row = new double[n]);int j = 0;do {if (j >= n) throw new java.io.IOException("Row " + v.size() + " is too long.");row[j++] = Double.valueOf(tokenizer.sval).doubleValue();} while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);if (j < n) throw new java.io.IOException("Row " + v.size() + " is too short.");}int m = v.size(); // Now we've got the number of rows.double[][] A = new double[m][];v.copyInto(A); // copy the rows out of the vectorreturn new Matrix(A);}/* ------------------------Private Methods* ------------------------ *//** Check if size(A) == size(B) **/private void checkMatrixDimensions (Matrix B) {if (B.m != m || B.n != n) {throw new IllegalArgumentException("Matrix dimensions must agree.");}}private static final long serialVersionUID = 1; }
package Jama.util;public class Maths {/** sqrt(a^2 + b^2) without under/overflow. **/public static double hypot(double a, double b) {double r;if (Math.abs(a) > Math.abs(b)) {r = b/a;r = Math.abs(a)*Math.sqrt(1+r*r);} else if (b != 0) {r = a/b;r = Math.abs(b)*Math.sqrt(1+r*r);} else {r = 0.0;}return r;} }


package Jama; import Jama.util.*;/** Singular Value Decomposition.<P>For an m-by-n matrix A with m >= n, the singular value decomposition isan m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, andan n-by-n orthogonal matrix V so that A = U*S*V'.<P>The singular values, sigma[k] = S[k][k], are ordered so thatsigma[0] >= sigma[1] >= ... >= sigma[n-1].<P>The singular value decompostion always exists, so the constructor willnever fail. The matrix condition number and the effective numericalrank can be computed from this decomposition.*/public class SingularValueDecomposition implements java.io.Serializable {/* ------------------------Class variables* ------------------------ *//** Arrays for internal storage of U and V.@serial internal storage of U.@serial internal storage of V.*/private double[][] U, V;/** Array for internal storage of singular values.@serial internal storage of singular values.*/private double[] s;/** Row and column dimensions.@serial row dimension.@serial column dimension.*/private int m, n;/* ------------------------Constructor* ------------------------ *//** Construct the singular value decompositionStructure to access U, S and V.@param Arg Rectangular matrix*/public SingularValueDecomposition (Matrix Arg) {// Derived from LINPACK code.// Initialize.double[][] A = Arg.getArrayCopy();m = Arg.getRowDimension();n = Arg.getColumnDimension();/* Apparently the failing cases are only a proper subset of (m<n), so let's not throw error. Correct fix to come later?if (m<n) {throw new IllegalArgumentException("Jama SVD only works for m >= n"); }*/int nu = Math.min(m,n);s = new double [Math.min(m+1,n)];U = new double [m][nu];V = new double [n][n];double[] e = new double [n];double[] work = new double [m];boolean wantu = true;boolean wantv = true;// Reduce A to bidiagonal form, storing the diagonal elements// in s and the super-diagonal elements in e.int nct = Math.min(m-1,n);int nrt = Math.max(0,Math.min(n-2,m));for (int k = 0; k < Math.max(nct,nrt); k++) {if (k < nct) {// Compute the transformation for the k-th column and// place the k-th diagonal in s[k].// Compute 2-norm of k-th column without under/overflow.s[k] = 0;for (int i = k; i < m; i++) {s[k] = Maths.hypot(s[k],A[i][k]);}if (s[k] != 0.0) {if (A[k][k] < 0.0) {s[k] = -s[k];}for (int i = k; i < m; i++) {A[i][k] /= s[k];}A[k][k] += 1.0;}s[k] = -s[k];}for (int j = k+1; j < n; j++) {if ((k < nct) & (s[k] != 0.0)) {// Apply the transformation.double t = 0;for (int i = k; i < m; i++) {t += A[i][k]*A[i][j];}t = -t/A[k][k];for (int i = k; i < m; i++) {A[i][j] += t*A[i][k];}}// Place the k-th row of A into e for the// subsequent calculation of the row transformation.e[j] = A[k][j];}if (wantu & (k < nct)) {// Place the transformation in U for subsequent back// multiplication.for (int i = k; i < m; i++) {U[i][k] = A[i][k];}}if (k < nrt) {// Compute the k-th row transformation and place the// k-th super-diagonal in e[k].// Compute 2-norm without under/overflow.e[k] = 0;for (int i = k+1; i < n; i++) {e[k] = Maths.hypot(e[k],e[i]);}if (e[k] != 0.0) {if (e[k+1] < 0.0) {e[k] = -e[k];}for (int i = k+1; i < n; i++) {e[i] /= e[k];}e[k+1] += 1.0;}e[k] = -e[k];if ((k+1 < m) & (e[k] != 0.0)) {// Apply the transformation.for (int i = k+1; i < m; i++) {work[i] = 0.0;}for (int j = k+1; j < n; j++) {for (int i = k+1; i < m; i++) {work[i] += e[j]*A[i][j];}}for (int j = k+1; j < n; j++) {double t = -e[j]/e[k+1];for (int i = k+1; i < m; i++) {A[i][j] += t*work[i];}}}if (wantv) {// Place the transformation in V for subsequent// back multiplication.for (int i = k+1; i < n; i++) {V[i][k] = e[i];}}}}// Set up the final bidiagonal matrix or order p.int p = Math.min(n,m+1);if (nct < n) {s[nct] = A[nct][nct];}if (m < p) {s[p-1] = 0.0;}if (nrt+1 < p) {e[nrt] = A[nrt][p-1];}e[p-1] = 0.0;// If required, generate U.if (wantu) {for (int j = nct; j < nu; j++) {for (int i = 0; i < m; i++) {U[i][j] = 0.0;}U[j][j] = 1.0;}for (int k = nct-1; k >= 0; k--) {if (s[k] != 0.0) {for (int j = k+1; j < nu; j++) {double t = 0;for (int i = k; i < m; i++) {t += U[i][k]*U[i][j];}t = -t/U[k][k];for (int i = k; i < m; i++) {U[i][j] += t*U[i][k];}}for (int i = k; i < m; i++ ) {U[i][k] = -U[i][k];}U[k][k] = 1.0 + U[k][k];for (int i = 0; i < k-1; i++) {U[i][k] = 0.0;}} else {for (int i = 0; i < m; i++) {U[i][k] = 0.0;}U[k][k] = 1.0;}}}// If required, generate V.if (wantv) {for (int k = n-1; k >= 0; k--) {if ((k < nrt) & (e[k] != 0.0)) {for (int j = k+1; j < nu; j++) {double t = 0;for (int i = k+1; i < n; i++) {t += V[i][k]*V[i][j];}t = -t/V[k+1][k];for (int i = k+1; i < n; i++) {V[i][j] += t*V[i][k];}}}for (int i = 0; i < n; i++) {V[i][k] = 0.0;}V[k][k] = 1.0;}}// Main iteration loop for the singular values.int pp = p-1;int iter = 0;double eps = Math.pow(2.0,-52.0);double tiny = Math.pow(2.0,-966.0);while (p > 0) {int k,kase;// Here is where a test for too many iterations would go.// This section of the program inspects for// negligible elements in the s and e arrays. On// completion the variables kase and k are set as follows.// kase = 1 if s(p) and e[k-1] are negligible and k<p// kase = 2 if s(k) is negligible and k<p// kase = 3 if e[k-1] is negligible, k<p, and// s(k), ..., s(p) are not negligible (qr step).// kase = 4 if e(p-1) is negligible (convergence).for (k = p-2; k >= -1; k--) {if (k == -1) {break;}if (Math.abs(e[k]) <=tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {e[k] = 0.0;break;}}if (k == p-2) {kase = 4;} else {int ks;for (ks = p-1; ks >= k; ks--) {if (ks == k) {break;}double t = (ks != p ? Math.abs(e[ks]) : 0.) + (ks != k+1 ? Math.abs(e[ks-1]) : 0.);if (Math.abs(s[ks]) <= tiny + eps*t) {s[ks] = 0.0;break;}}if (ks == k) {kase = 3;} else if (ks == p-1) {kase = 1;} else {kase = 2;k = ks;}}k++;// Perform the task indicated by kase.switch (kase) {// Deflate negligible s(p).case 1: {double f = e[p-2];e[p-2] = 0.0;for (int j = p-2; j >= k; j--) {double t = Maths.hypot(s[j],f);double cs = s[j]/t;double sn = f/t;s[j] = t;if (j != k) {f = -sn*e[j-1];e[j-1] = cs*e[j-1];}if (wantv) {for (int i = 0; i < n; i++) {t = cs*V[i][j] + sn*V[i][p-1];V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];V[i][j] = t;}}}}break;// Split at negligible s(k).case 2: {double f = e[k-1];e[k-1] = 0.0;for (int j = k; j < p; j++) {double t = Maths.hypot(s[j],f);double cs = s[j]/t;double sn = f/t;s[j] = t;f = -sn*e[j];e[j] = cs*e[j];if (wantu) {for (int i = 0; i < m; i++) {t = cs*U[i][j] + sn*U[i][k-1];U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];U[i][j] = t;}}}}break;// Perform one qr step.case 3: {// Calculate the shift.double scale = Math.max(Math.max(Math.max(Math.max(Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), Math.abs(s[k])),Math.abs(e[k]));double sp = s[p-1]/scale;double spm1 = s[p-2]/scale;double epm1 = e[p-2]/scale;double sk = s[k]/scale;double ek = e[k]/scale;double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;double c = (sp*epm1)*(sp*epm1);double shift = 0.0;if ((b != 0.0) | (c != 0.0)) {shift = Math.sqrt(b*b + c);if (b < 0.0) {shift = -shift;}shift = c/(b + shift);}double f = (sk + sp)*(sk - sp) + shift;double g = sk*ek;// Chase zeros.for (int j = k; j < p-1; j++) {double t = Maths.hypot(f,g);double cs = f/t;double sn = g/t;if (j != k) {e[j-1] = t;}f = cs*s[j] + sn*e[j];e[j] = cs*e[j] - sn*s[j];g = sn*s[j+1];s[j+1] = cs*s[j+1];if (wantv) {for (int i = 0; i < n; i++) {t = cs*V[i][j] + sn*V[i][j+1];V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];V[i][j] = t;}}t = Maths.hypot(f,g);cs = f/t;sn = g/t;s[j] = t;f = cs*e[j] + sn*s[j+1];s[j+1] = -sn*e[j] + cs*s[j+1];g = sn*e[j+1];e[j+1] = cs*e[j+1];if (wantu && (j < m-1)) {for (int i = 0; i < m; i++) {t = cs*U[i][j] + sn*U[i][j+1];U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];U[i][j] = t;}}}e[p-2] = f;iter = iter + 1;}break;// Convergence.case 4: {// Make the singular values positive.if (s[k] <= 0.0) {s[k] = (s[k] < 0.0 ? -s[k] : 0.0);if (wantv) {for (int i = 0; i <= pp; i++) {V[i][k] = -V[i][k];}}}// Order the singular values.while (k < pp) {if (s[k] >= s[k+1]) {break;}double t = s[k];s[k] = s[k+1];s[k+1] = t;if (wantv && (k < n-1)) {for (int i = 0; i < n; i++) {t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;}}if (wantu && (k < m-1)) {for (int i = 0; i < m; i++) {t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;}}k++;}iter = 0;p--;}break;}}}/* ------------------------Public Methods* ------------------------ *//** Return the left singular vectors@return U*/public Matrix getU () {return new Matrix(U,m,Math.min(m+1,n));}/** Return the right singular vectors@return V*/public Matrix getV () {return new Matrix(V,n,n);}/** Return the one-dimensional array of singular values@return diagonal of S.*/public double[] getSingularValues () {return s;}/** Return the diagonal matrix of singular values@return S*/public Matrix getS () {Matrix X = new Matrix(n,n);double[][] S = X.getArray();for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {S[i][j] = 0.0;}S[i][i] = this.s[i];}return X;}/** Two norm@return max(S)*/public double norm2 () {return s[0];}/** Two norm condition number@return max(S)/min(S)*/public double cond () {return s[0]/s[Math.min(m,n)-1];}/** Effective numerical matrix rank@return Number of nonnegligible singular values.*/public int rank () {double eps = Math.pow(2.0,-52.0);double tol = Math.max(m,n)*s[0]*eps;int r = 0;for (int i = 0; i < s.length; i++) {if (s[i] > tol) {r++;}}return r;}private static final long serialVersionUID = 1; }
package Jama; import Jama.util.*;/** QR Decomposition. <P>For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-northogonal matrix Q and an n-by-n upper triangular matrix R so thatA = Q*R. <P>The QR decompostion always exists, even if the matrix does not havefull rank, so the constructor will never fail. The primary use of theQR decomposition is in the least squares solution of nonsquare systemsof simultaneous linear equations. This will fail if isFullRank()returns false. */public class QRDecomposition implements java.io.Serializable {/* ------------------------Class variables* ------------------------ *//** Array for internal storage of decomposition.@serial internal array storage.*/private double[][] QR;/** Row and column dimensions.@serial column dimension.@serial row dimension.*/private int m, n;/** Array for internal storage of diagonal of R.@serial diagonal of R.*/private double[] Rdiag;/* ------------------------Constructor* ------------------------ *//** QR Decomposition, computed by Householder reflections.Structure to access R and the Householder vectors and compute Q.@param A Rectangular matrix*/public QRDecomposition (Matrix A) {// Initialize.QR = A.getArrayCopy();m = A.getRowDimension();n = A.getColumnDimension();Rdiag = new double[n];// Main loop.for (int k = 0; k < n; k++) {// Compute 2-norm of k-th column without under/overflow.double nrm = 0;for (int i = k; i < m; i++) {nrm = Maths.hypot(nrm,QR[i][k]);}if (nrm != 0.0) {// Form k-th Householder vector.if (QR[k][k] < 0) {nrm = -nrm;}for (int i = k; i < m; i++) {QR[i][k] /= nrm;}QR[k][k] += 1.0;// Apply transformation to remaining columns.for (int j = k+1; j < n; j++) {double s = 0.0; for (int i = k; i < m; i++) {s += QR[i][k]*QR[i][j];}s = -s/QR[k][k];for (int i = k; i < m; i++) {QR[i][j] += s*QR[i][k];}}}Rdiag[k] = -nrm;}}/* ------------------------Public Methods* ------------------------ *//** Is the matrix full rank?@return true if R, and hence A, has full rank.*/public boolean isFullRank () {for (int j = 0; j < n; j++) {if (Rdiag[j] == 0)return false;}return true;}/** Return the Householder vectors@return Lower trapezoidal matrix whose columns define the reflections*/public Matrix getH () {Matrix X = new Matrix(m,n);double[][] H = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (i >= j) {H[i][j] = QR[i][j];} else {H[i][j] = 0.0;}}}return X;}/** Return the upper triangular factor@return R*/public Matrix getR () {Matrix X = new Matrix(n,n);double[][] R = X.getArray();for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {if (i < j) {R[i][j] = QR[i][j];} else if (i == j) {R[i][j] = Rdiag[i];} else {R[i][j] = 0.0;}}}return X;}/** Generate and return the (economy-sized) orthogonal factor@return Q*/public Matrix getQ () {Matrix X = new Matrix(m,n);double[][] Q = X.getArray();for (int k = n-1; k >= 0; k--) {for (int i = 0; i < m; i++) {Q[i][k] = 0.0;}Q[k][k] = 1.0;for (int j = k; j < n; j++) {if (QR[k][k] != 0) {double s = 0.0;for (int i = k; i < m; i++) {s += QR[i][k]*Q[i][j];}s = -s/QR[k][k];for (int i = k; i < m; i++) {Q[i][j] += s*QR[i][k];}}}}return X;}/** Least squares solution of A*X = B@param B A Matrix with as many rows as A and any number of columns.@return X that minimizes the two norm of Q*R*X-B.@exception IllegalArgumentException Matrix row dimensions must agree.@exception RuntimeException Matrix is rank deficient.*/public Matrix solve (Matrix B) {if (B.getRowDimension() != m) {throw new IllegalArgumentException("Matrix row dimensions must agree.");}if (!this.isFullRank()) {throw new RuntimeException("Matrix is rank deficient.");}// Copy right hand sideint nx = B.getColumnDimension();double[][] X = B.getArrayCopy();// Compute Y = transpose(Q)*Bfor (int k = 0; k < n; k++) {for (int j = 0; j < nx; j++) {double s = 0.0; for (int i = k; i < m; i++) {s += QR[i][k]*X[i][j];}s = -s/QR[k][k];for (int i = k; i < m; i++) {X[i][j] += s*QR[i][k];}}}// Solve R*X = Y;for (int k = n-1; k >= 0; k--) {for (int j = 0; j < nx; j++) {X[k][j] /= Rdiag[k];}for (int i = 0; i < k; i++) {for (int j = 0; j < nx; j++) {X[i][j] -= X[k][j]*QR[i][k];}}}return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1));}private static final long serialVersionUID = 1; }
package Jama;/** LU Decomposition.<P>For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-nunit lower triangular matrix L, an n-by-n upper triangular matrix U,and a permutation vector piv of length m so that A(piv,:) = L*U.If m < n, then L is m-by-m and U is m-by-n.<P>The LU decompostion with pivoting always exists, even if the matrix issingular, so the constructor will never fail. The primary use of theLU decomposition is in the solution of square systems of simultaneouslinear equations. This will fail if isNonsingular() returns false.*/public class LUDecomposition implements java.io.Serializable {/* ------------------------Class variables* ------------------------ *//** Array for internal storage of decomposition.@serial internal array storage.*/private double[][] LU;/** Row and column dimensions, and pivot sign.@serial column dimension.@serial row dimension.@serial pivot sign.*/private int m, n, pivsign; /** Internal storage of pivot vector.@serial pivot vector.*/private int[] piv;/* ------------------------Constructor* ------------------------ *//** LU DecompositionStructure to access L, U and piv.@param A Rectangular matrix*/public LUDecomposition (Matrix A) {// Use a "left-looking", dot-product, Crout/Doolittle algorithm.LU = A.getArrayCopy();m = A.getRowDimension();n = A.getColumnDimension();piv = new int[m];for (int i = 0; i < m; i++) {piv[i] = i;}pivsign = 1;double[] LUrowi;double[] LUcolj = new double[m];// Outer loop.for (int j = 0; j < n; j++) {// Make a copy of the j-th column to localize references.for (int i = 0; i < m; i++) {LUcolj[i] = LU[i][j];}// Apply previous transformations.for (int i = 0; i < m; i++) {LUrowi = LU[i];// Most of the time is spent in the following dot product.int kmax = Math.min(i,j);double s = 0.0;for (int k = 0; k < kmax; k++) {s += LUrowi[k]*LUcolj[k];}LUrowi[j] = LUcolj[i] -= s;}// Find pivot and exchange if necessary.int p = j;for (int i = j+1; i < m; i++) {if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {p = i;}}if (p != j) {for (int k = 0; k < n; k++) {double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;}int k = piv[p]; piv[p] = piv[j]; piv[j] = k;pivsign = -pivsign;}// Compute multipliers.if (j < m & LU[j][j] != 0.0) {for (int i = j+1; i < m; i++) {LU[i][j] /= LU[j][j];}}}}/* ------------------------Temporary, experimental code.------------------------ *\\** LU Decomposition, computed by Gaussian elimination.<P>This constructor computes L and U with the "daxpy"-based eliminationalgorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,Crout algorithm will be faster. We have temporarily included thisconstructor until timing experiments confirm this suspicion.<P>@param A Rectangular matrix@param linpackflag Use Gaussian elimination. Actual value ignored.@return Structure to access L, U and piv.*\public LUDecomposition (Matrix A, int linpackflag) {// Initialize.LU = A.getArrayCopy();m = A.getRowDimension();n = A.getColumnDimension();piv = new int[m];for (int i = 0; i < m; i++) {piv[i] = i;}pivsign = 1;// Main loop.for (int k = 0; k < n; k++) {// Find pivot.int p = k;for (int i = k+1; i < m; i++) {if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {p = i;}}// Exchange if necessary.if (p != k) {for (int j = 0; j < n; j++) {double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;}int t = piv[p]; piv[p] = piv[k]; piv[k] = t;pivsign = -pivsign;}// Compute multipliers and eliminate k-th column.if (LU[k][k] != 0.0) {for (int i = k+1; i < m; i++) {LU[i][k] /= LU[k][k];for (int j = k+1; j < n; j++) {LU[i][j] -= LU[i][k]*LU[k][j];}}}}}\* ------------------------End of temporary code.* ------------------------ *//* ------------------------Public Methods* ------------------------ *//** Is the matrix nonsingular?@return true if U, and hence A, is nonsingular.*/public boolean isNonsingular () {for (int j = 0; j < n; j++) {if (LU[j][j] == 0)return false;}return true;}/** Return lower triangular factor@return L*/public Matrix getL () {Matrix X = new Matrix(m,n);double[][] L = X.getArray();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (i > j) {L[i][j] = LU[i][j];} else if (i == j) {L[i][j] = 1.0;} else {L[i][j] = 0.0;}}}return X;}/** Return upper triangular factor@return U*/public Matrix getU () {Matrix X = new Matrix(n,n);double[][] U = X.getArray();for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {if (i <= j) {U[i][j] = LU[i][j];} else {U[i][j] = 0.0;}}}return X;}/** Return pivot permutation vector@return piv*/public int[] getPivot () {int[] p = new int[m];for (int i = 0; i < m; i++) {p[i] = piv[i];}return p;}/** Return pivot permutation vector as a one-dimensional double array@return (double) piv*/public double[] getDoublePivot () {double[] vals = new double[m];for (int i = 0; i < m; i++) {vals[i] = (double) piv[i];}return vals;}/** Determinant@return det(A)@exception IllegalArgumentException Matrix must be square*/public double det () {if (m != n) {throw new IllegalArgumentException("Matrix must be square.");}double d = (double) pivsign;for (int j = 0; j < n; j++) {d *= LU[j][j];}return d;}/** Solve A*X = B@param B A Matrix with as many rows as A and any number of columns.@return X so that L*U*X = B(piv,:)@exception IllegalArgumentException Matrix row dimensions must agree.@exception RuntimeException Matrix is singular.*/public Matrix solve (Matrix B) {if (B.getRowDimension() != m) {throw new IllegalArgumentException("Matrix row dimensions must agree.");}if (!this.isNonsingular()) {throw new RuntimeException("Matrix is singular.");}// Copy right hand side with pivotingint nx = B.getColumnDimension();Matrix Xmat = B.getMatrix(piv,0,nx-1);double[][] X = Xmat.getArray();// Solve L*Y = B(piv,:)for (int k = 0; k < n; k++) {for (int i = k+1; i < n; i++) {for (int j = 0; j < nx; j++) {X[i][j] -= X[k][j]*LU[i][k];}}}// Solve U*X = Y;for (int k = n-1; k >= 0; k--) {for (int j = 0; j < nx; j++) {X[k][j] /= LU[k][k];}for (int i = 0; i < k; i++) {for (int j = 0; j < nx; j++) {X[i][j] -= X[k][j]*LU[i][k];}}}return Xmat;}private static final long serialVersionUID = 1; }
package Jama;/** Cholesky Decomposition.<P>For a symmetric, positive definite matrix A, the Cholesky decompositionis an lower triangular matrix L so that A = L*L'.<P>If the matrix is not symmetric or positive definite, the constructorreturns a partial decomposition and sets an internal flag that maybe queried by the isSPD() method.*/public class CholeskyDecomposition implements java.io.Serializable {/* ------------------------Class variables* ------------------------ *//** Array for internal storage of decomposition.@serial internal array storage.*/private double[][] L;/** Row and column dimension (square matrix).@serial matrix dimension.*/private int n;/** Symmetric and positive definite flag.@serial is symmetric and positive definite flag.*/private boolean isspd;/* ------------------------Constructor* ------------------------ *//** Cholesky algorithm for symmetric and positive definite matrix.Structure to access L and isspd flag.@param Arg Square, symmetric matrix.*/public CholeskyDecomposition (Matrix Arg) {// Initialize.double[][] A = Arg.getArray();n = Arg.getRowDimension();L = new double[n][n];isspd = (Arg.getColumnDimension() == n);// Main loop.for (int j = 0; j < n; j++) {double[] Lrowj = L[j];double d = 0.0;for (int k = 0; k < j; k++) {double[] Lrowk = L[k];double s = 0.0;for (int i = 0; i < k; i++) {s += Lrowk[i]*Lrowj[i];}Lrowj[k] = s = (A[j][k] - s)/L[k][k];d = d + s*s;isspd = isspd & (A[k][j] == A[j][k]); }d = A[j][j] - d;isspd = isspd & (d > 0.0);L[j][j] = Math.sqrt(Math.max(d,0.0));for (int k = j+1; k < n; k++) {L[j][k] = 0.0;}}}/* ------------------------Temporary, experimental code.* ------------------------ *\\** Right Triangular Cholesky Decomposition.<P>For a symmetric, positive definite matrix A, the Right Choleskydecomposition is an upper triangular matrix R so that A = R'*R.This constructor computes R with the Fortran inspired column orientedalgorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,lower triangular decomposition is faster. We have temporarily includedthis constructor here until timing experiments confirm this suspicion.*\\** Array for internal storage of right triangular decomposition. **\private transient double[][] R;\** Cholesky algorithm for symmetric and positive definite matrix.@param A Square, symmetric matrix.@param rightflag Actual value ignored.@return Structure to access R and isspd flag.*\public CholeskyDecomposition (Matrix Arg, int rightflag) {// Initialize.double[][] A = Arg.getArray();n = Arg.getColumnDimension();R = new double[n][n];isspd = (Arg.getColumnDimension() == n);// Main loop.for (int j = 0; j < n; j++) {double d = 0.0;for (int k = 0; k < j; k++) {double s = A[k][j];for (int i = 0; i < k; i++) {s = s - R[i][k]*R[i][j];}R[k][j] = s = s/R[k][k];d = d + s*s;isspd = isspd & (A[k][j] == A[j][k]); }d = A[j][j] - d;isspd = isspd & (d > 0.0);R[j][j] = Math.sqrt(Math.max(d,0.0));for (int k = j+1; k < n; k++) {R[k][j] = 0.0;}}}\** Return upper triangular factor.@return R*\public Matrix getR () {return new Matrix(R,n,n);}\* ------------------------End of temporary code.* ------------------------ *//* ------------------------Public Methods* ------------------------ *//** Is the matrix symmetric and positive definite?@return true if A is symmetric and positive definite.*/public boolean isSPD () {return isspd;}/** Return triangular factor.@return L*/public Matrix getL () {return new Matrix(L,n,n);}/** Solve A*X = B@param B A Matrix with as many rows as A and any number of columns.@return X so that L*L'*X = B@exception IllegalArgumentException Matrix row dimensions must agree.@exception RuntimeException Matrix is not symmetric positive definite.*/public Matrix solve (Matrix B) {if (B.getRowDimension() != n) {throw new IllegalArgumentException("Matrix row dimensions must agree.");}if (!isspd) {throw new RuntimeException("Matrix is not symmetric positive definite.");}// Copy right hand side.double[][] X = B.getArrayCopy();int nx = B.getColumnDimension();// Solve L*Y = B;for (int k = 0; k < n; k++) {for (int j = 0; j < nx; j++) {for (int i = 0; i < k ; i++) {X[k][j] -= X[i][j]*L[k][i];}X[k][j] /= L[k][k];}}// Solve L'*X = Y;for (int k = n-1; k >= 0; k--) {for (int j = 0; j < nx; j++) {for (int i = k+1; i < n ; i++) {X[k][j] -= X[i][j]*L[i][k];}X[k][j] /= L[k][k];}}return new Matrix(X,n,nx);}private static final long serialVersionUID = 1;}
package Jama; import Jama.util.*;/** Eigenvalues and eigenvectors of a real matrix. <P>If A is symmetric, then A = V*D*V' where the eigenvalue matrix D isdiagonal and the eigenvector matrix V is orthogonal.I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix. <P>If A is not symmetric, then the eigenvalue matrix D is block diagonalwith the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. Thecolumns of V represent the eigenvectors in the sense that A*V = V*D,i.e. A.times(V) equals V.times(D). The matrix V may be badlyconditioned, or even singular, so the validity of the equationA = V*D*inverse(V) depends upon V.cond(). **/public class EigenvalueDecomposition implements java.io.Serializable {/* ------------------------Class variables* ------------------------ *//** Row and column dimension (square matrix).@serial matrix dimension.*/private int n;/** Symmetry flag.@serial internal symmetry flag.*/private boolean issymmetric;/** Arrays for internal storage of eigenvalues.@serial internal storage of eigenvalues.*/private double[] d, e;/** Array for internal storage of eigenvectors.@serial internal storage of eigenvectors.*/private double[][] V;/** Array for internal storage of nonsymmetric Hessenberg form.@serial internal storage of nonsymmetric Hessenberg form.*/private double[][] H;/** Working storage for nonsymmetric algorithm.@serial working storage for nonsymmetric algorithm.*/private double[] ort;/* ------------------------Private Methods* ------------------------ */// Symmetric Householder reduction to tridiagonal form.private void tred2 () {// This is derived from the Algol procedures tred2 by// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding// Fortran subroutine in EISPACK.for (int j = 0; j < n; j++) {d[j] = V[n-1][j];}// Householder reduction to tridiagonal form.for (int i = n-1; i > 0; i--) {// Scale to avoid under/overflow.double scale = 0.0;double h = 0.0;for (int k = 0; k < i; k++) {scale = scale + Math.abs(d[k]);}if (scale == 0.0) {e[i] = d[i-1];for (int j = 0; j < i; j++) {d[j] = V[i-1][j];V[i][j] = 0.0;V[j][i] = 0.0;}} else {// Generate Householder vector.for (int k = 0; k < i; k++) {d[k] /= scale;h += d[k] * d[k];}double f = d[i-1];double g = Math.sqrt(h);if (f > 0) {g = -g;}e[i] = scale * g;h = h - f * g;d[i-1] = f - g;for (int j = 0; j < i; j++) {e[j] = 0.0;}// Apply similarity transformation to remaining columns.for (int j = 0; j < i; j++) {f = d[j];V[j][i] = f;g = e[j] + V[j][j] * f;for (int k = j+1; k <= i-1; k++) {g += V[k][j] * d[k];e[k] += V[k][j] * f;}e[j] = g;}f = 0.0;for (int j = 0; j < i; j++) {e[j] /= h;f += e[j] * d[j];}double hh = f / (h + h);for (int j = 0; j < i; j++) {e[j] -= hh * d[j];}for (int j = 0; j < i; j++) {f = d[j];g = e[j];for (int k = j; k <= i-1; k++) {V[k][j] -= (f * e[k] + g * d[k]);}d[j] = V[i-1][j];V[i][j] = 0.0;}}d[i] = h;}// Accumulate transformations.for (int i = 0; i < n-1; i++) {V[n-1][i] = V[i][i];V[i][i] = 1.0;double h = d[i+1];if (h != 0.0) {for (int k = 0; k <= i; k++) {d[k] = V[k][i+1] / h;}for (int j = 0; j <= i; j++) {double g = 0.0;for (int k = 0; k <= i; k++) {g += V[k][i+1] * V[k][j];}for (int k = 0; k <= i; k++) {V[k][j] -= g * d[k];}}}for (int k = 0; k <= i; k++) {V[k][i+1] = 0.0;}}for (int j = 0; j < n; j++) {d[j] = V[n-1][j];V[n-1][j] = 0.0;}V[n-1][n-1] = 1.0;e[0] = 0.0;} // Symmetric tridiagonal QL algorithm.private void tql2 () {// This is derived from the Algol procedures tql2, by// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding// Fortran subroutine in EISPACK.for (int i = 1; i < n; i++) {e[i-1] = e[i];}e[n-1] = 0.0;double f = 0.0;double tst1 = 0.0;double eps = Math.pow(2.0,-52.0);for (int l = 0; l < n; l++) {// Find small subdiagonal elementtst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));int m = l;while (m < n) {if (Math.abs(e[m]) <= eps*tst1) {break;}m++;}// If m == l, d[l] is an eigenvalue,// otherwise, iterate.if (m > l) {int iter = 0;do {iter = iter + 1; // (Could check iteration count here.)// Compute implicit shiftdouble g = d[l];double p = (d[l+1] - g) / (2.0 * e[l]);double r = Maths.hypot(p,1.0);if (p < 0) {r = -r;}d[l] = e[l] / (p + r);d[l+1] = e[l] * (p + r);double dl1 = d[l+1];double h = g - d[l];for (int i = l+2; i < n; i++) {d[i] -= h;}f = f + h;// Implicit QL transformation.p = d[m];double c = 1.0;double c2 = c;double c3 = c;double el1 = e[l+1];double s = 0.0;double s2 = 0.0;for (int i = m-1; i >= l; i--) {c3 = c2;c2 = c;s2 = s;g = c * e[i];h = c * p;r = Maths.hypot(p,e[i]);e[i+1] = s * r;s = e[i] / r;c = p / r;p = c * d[i] - s * g;d[i+1] = h + s * (c * g + s * d[i]);// Accumulate transformation.for (int k = 0; k < n; k++) {h = V[k][i+1];V[k][i+1] = s * V[k][i] + c * h;V[k][i] = c * V[k][i] - s * h;}}p = -s * s2 * c3 * el1 * e[l] / dl1;e[l] = s * p;d[l] = c * p;// Check for convergence.} while (Math.abs(e[l]) > eps*tst1);}d[l] = d[l] + f;e[l] = 0.0;}// Sort eigenvalues and corresponding vectors.for (int i = 0; i < n-1; i++) {int k = i;double p = d[i];for (int j = i+1; j < n; j++) {if (d[j] < p) {k = j;p = d[j];}}if (k != i) {d[k] = d[i];d[i] = p;for (int j = 0; j < n; j++) {p = V[j][i];V[j][i] = V[j][k];V[j][k] = p;}}}}// Nonsymmetric reduction to Hessenberg form.private void orthes () {// This is derived from the Algol procedures orthes and ortran,// by Martin and Wilkinson, Handbook for Auto. Comp.,// Vol.ii-Linear Algebra, and the corresponding// Fortran subroutines in EISPACK.int low = 0;int high = n-1;for (int m = low+1; m <= high-1; m++) {// Scale column.double scale = 0.0;for (int i = m; i <= high; i++) {scale = scale + Math.abs(H[i][m-1]);}if (scale != 0.0) {// Compute Householder transformation.double h = 0.0;for (int i = high; i >= m; i--) {ort[i] = H[i][m-1]/scale;h += ort[i] * ort[i];}double g = Math.sqrt(h);if (ort[m] > 0) {g = -g;}h = h - ort[m] * g;ort[m] = ort[m] - g;// Apply Householder similarity transformation// H = (I-u*u'/h)*H*(I-u*u')/h)for (int j = m; j < n; j++) {double f = 0.0;for (int i = high; i >= m; i--) {f += ort[i]*H[i][j];}f = f/h;for (int i = m; i <= high; i++) {H[i][j] -= f*ort[i];}}for (int i = 0; i <= high; i++) {double f = 0.0;for (int j = high; j >= m; j--) {f += ort[j]*H[i][j];}f = f/h;for (int j = m; j <= high; j++) {H[i][j] -= f*ort[j];}}ort[m] = scale*ort[m];H[m][m-1] = scale*g;}}// Accumulate transformations (Algol's ortran).for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {V[i][j] = (i == j ? 1.0 : 0.0);}}for (int m = high-1; m >= low+1; m--) {if (H[m][m-1] != 0.0) {for (int i = m+1; i <= high; i++) {ort[i] = H[i][m-1];}for (int j = m; j <= high; j++) {double g = 0.0;for (int i = m; i <= high; i++) {g += ort[i] * V[i][j];}// Double division avoids possible underflowg = (g / ort[m]) / H[m][m-1];for (int i = m; i <= high; i++) {V[i][j] += g * ort[i];}}}}}// Complex scalar division.private transient double cdivr, cdivi;private void cdiv(double xr, double xi, double yr, double yi) {double r,d;if (Math.abs(yr) > Math.abs(yi)) {r = yi/yr;d = yr + r*yi;cdivr = (xr + r*xi)/d;cdivi = (xi - r*xr)/d;} else {r = yr/yi;d = yi + r*yr;cdivr = (r*xr + xi)/d;cdivi = (r*xi - xr)/d;}}// Nonsymmetric reduction from Hessenberg to real Schur form.private void hqr2 () {// This is derived from the Algol procedure hqr2,// by Martin and Wilkinson, Handbook for Auto. Comp.,// Vol.ii-Linear Algebra, and the corresponding// Fortran subroutine in EISPACK.// Initializeint nn = this.n;int n = nn-1;int low = 0;int high = nn-1;double eps = Math.pow(2.0,-52.0);double exshift = 0.0;double p=0,q=0,r=0,s=0,z=0,t,w,x,y;// Store roots isolated by balanc and compute matrix normdouble norm = 0.0;for (int i = 0; i < nn; i++) {if (i < low | i > high) {d[i] = H[i][i];e[i] = 0.0;}for (int j = Math.max(i-1,0); j < nn; j++) {norm = norm + Math.abs(H[i][j]);}}// Outer loop over eigenvalue indexint iter = 0;while (n >= low) {// Look for single small sub-diagonal elementint l = n;while (l > low) {s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);if (s == 0.0) {s = norm;}if (Math.abs(H[l][l-1]) < eps * s) {break;}l--;}// Check for convergence// One root foundif (l == n) {H[n][n] = H[n][n] + exshift;d[n] = H[n][n];e[n] = 0.0;n--;iter = 0;// Two roots found} else if (l == n-1) {w = H[n][n-1] * H[n-1][n];p = (H[n-1][n-1] - H[n][n]) / 2.0;q = p * p + w;z = Math.sqrt(Math.abs(q));H[n][n] = H[n][n] + exshift;H[n-1][n-1] = H[n-1][n-1] + exshift;x = H[n][n];// Real pairif (q >= 0) {if (p >= 0) {z = p + z;} else {z = p - z;}d[n-1] = x + z;d[n] = d[n-1];if (z != 0.0) {d[n] = x - w / z;}e[n-1] = 0.0;e[n] = 0.0;x = H[n][n-1];s = Math.abs(x) + Math.abs(z);p = x / s;q = z / s;r = Math.sqrt(p * p+q * q);p = p / r;q = q / r;// Row modificationfor (int j = n-1; j < nn; j++) {z = H[n-1][j];H[n-1][j] = q * z + p * H[n][j];H[n][j] = q * H[n][j] - p * z;}// Column modificationfor (int i = 0; i <= n; i++) {z = H[i][n-1];H[i][n-1] = q * z + p * H[i][n];H[i][n] = q * H[i][n] - p * z;}// Accumulate transformationsfor (int i = low; i <= high; i++) {z = V[i][n-1];V[i][n-1] = q * z + p * V[i][n];V[i][n] = q * V[i][n] - p * z;}// Complex pair} else {d[n-1] = x + p;d[n] = x + p;e[n-1] = z;e[n] = -z;}n = n - 2;iter = 0;// No convergence yet} else {// Form shiftx = H[n][n];y = 0.0;w = 0.0;if (l < n) {y = H[n-1][n-1];w = H[n][n-1] * H[n-1][n];}// Wilkinson's original ad hoc shiftif (iter == 10) {exshift += x;for (int i = low; i <= n; i++) {H[i][i] -= x;}s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);x = y = 0.75 * s;w = -0.4375 * s * s;}// MATLAB's new ad hoc shiftif (iter == 30) {s = (y - x) / 2.0;s = s * s + w;if (s > 0) {s = Math.sqrt(s);if (y < x) {s = -s;}s = x - w / ((y - x) / 2.0 + s);for (int i = low; i <= n; i++) {H[i][i] -= s;}exshift += s;x = y = w = 0.964;}}iter = iter + 1; // (Could check iteration count here.)// Look for two consecutive small sub-diagonal elementsint m = n-2;while (m >= l) {z = H[m][m];r = x - z;s = y - z;p = (r * s - w) / H[m+1][m] + H[m][m+1];q = H[m+1][m+1] - z - r - s;r = H[m+2][m+1];s = Math.abs(p) + Math.abs(q) + Math.abs(r);p = p / s;q = q / s;r = r / s;if (m == l) {break;}if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +Math.abs(H[m+1][m+1])))) {break;}m--;}for (int i = m+2; i <= n; i++) {H[i][i-2] = 0.0;if (i > m+2) {H[i][i-3] = 0.0;}}// Double QR step involving rows l:n and columns m:nfor (int k = m; k <= n-1; k++) {boolean notlast = (k != n-1);if (k != m) {p = H[k][k-1];q = H[k+1][k-1];r = (notlast ? H[k+2][k-1] : 0.0);x = Math.abs(p) + Math.abs(q) + Math.abs(r);if (x == 0.0) {continue;}p = p / x;q = q / x;r = r / x;}s = Math.sqrt(p * p + q * q + r * r);if (p < 0) {s = -s;}if (s != 0) {if (k != m) {H[k][k-1] = -s * x;} else if (l != m) {H[k][k-1] = -H[k][k-1];}p = p + s;x = p / s;y = q / s;z = r / s;q = q / p;r = r / p;// Row modificationfor (int j = k; j < nn; j++) {p = H[k][j] + q * H[k+1][j];if (notlast) {p = p + r * H[k+2][j];H[k+2][j] = H[k+2][j] - p * z;}H[k][j] = H[k][j] - p * x;H[k+1][j] = H[k+1][j] - p * y;}// Column modificationfor (int i = 0; i <= Math.min(n,k+3); i++) {p = x * H[i][k] + y * H[i][k+1];if (notlast) {p = p + z * H[i][k+2];H[i][k+2] = H[i][k+2] - p * r;}H[i][k] = H[i][k] - p;H[i][k+1] = H[i][k+1] - p * q;}// Accumulate transformationsfor (int i = low; i <= high; i++) {p = x * V[i][k] + y * V[i][k+1];if (notlast) {p = p + z * V[i][k+2];V[i][k+2] = V[i][k+2] - p * r;}V[i][k] = V[i][k] - p;V[i][k+1] = V[i][k+1] - p * q;}} // (s != 0)} // k loop} // check convergence} // while (n >= low)// Backsubstitute to find vectors of upper triangular formif (norm == 0.0) {return;}for (n = nn-1; n >= 0; n--) {p = d[n];q = e[n];// Real vectorif (q == 0) {int l = n;H[n][n] = 1.0;for (int i = n-1; i >= 0; i--) {w = H[i][i] - p;r = 0.0;for (int j = l; j <= n; j++) {r = r + H[i][j] * H[j][n];}if (e[i] < 0.0) {z = w;s = r;} else {l = i;if (e[i] == 0.0) {if (w != 0.0) {H[i][n] = -r / w;} else {H[i][n] = -r / (eps * norm);}// Solve real equations} else {x = H[i][i+1];y = H[i+1][i];q = (d[i] - p) * (d[i] - p) + e[i] * e[i];t = (x * s - z * r) / q;H[i][n] = t;if (Math.abs(x) > Math.abs(z)) {H[i+1][n] = (-r - w * t) / x;} else {H[i+1][n] = (-s - y * t) / z;}}// Overflow controlt = Math.abs(H[i][n]);if ((eps * t) * t > 1) {for (int j = i; j <= n; j++) {H[j][n] = H[j][n] / t;}}}}// Complex vector} else if (q < 0) {int l = n-1;// Last vector component imaginary so matrix is triangularif (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {H[n-1][n-1] = q / H[n][n-1];H[n-1][n] = -(H[n][n] - p) / H[n][n-1];} else {cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);H[n-1][n-1] = cdivr;H[n-1][n] = cdivi;}H[n][n-1] = 0.0;H[n][n] = 1.0;for (int i = n-2; i >= 0; i--) {double ra,sa,vr,vi;ra = 0.0;sa = 0.0;for (int j = l; j <= n; j++) {ra = ra + H[i][j] * H[j][n-1];sa = sa + H[i][j] * H[j][n];}w = H[i][i] - p;if (e[i] < 0.0) {z = w;r = ra;s = sa;} else {l = i;if (e[i] == 0) {cdiv(-ra,-sa,w,q);H[i][n-1] = cdivr;H[i][n] = cdivi;} else {// Solve complex equationsx = H[i][i+1];y = H[i+1][i];vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;vi = (d[i] - p) * 2.0 * q;if (vr == 0.0 & vi == 0.0) {vr = eps * norm * (Math.abs(w) + Math.abs(q) +Math.abs(x) + Math.abs(y) + Math.abs(z));}cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);H[i][n-1] = cdivr;H[i][n] = cdivi;if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;} else {cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);H[i+1][n-1] = cdivr;H[i+1][n] = cdivi;}}// Overflow controlt = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));if ((eps * t) * t > 1) {for (int j = i; j <= n; j++) {H[j][n-1] = H[j][n-1] / t;H[j][n] = H[j][n] / t;}}}}}}// Vectors of isolated rootsfor (int i = 0; i < nn; i++) {if (i < low | i > high) {for (int j = i; j < nn; j++) {V[i][j] = H[i][j];}}}// Back transformation to get eigenvectors of original matrixfor (int j = nn-1; j >= low; j--) {for (int i = low; i <= high; i++) {z = 0.0;for (int k = low; k <= Math.min(j,high); k++) {z = z + V[i][k] * H[k][j];}V[i][j] = z;}}}/* ------------------------Constructor* ------------------------ *//** Check for symmetry, then construct the eigenvalue decompositionStructure to access D and V.@param Arg Square matrix*/public EigenvalueDecomposition (Matrix Arg) {double[][] A = Arg.getArray();n = Arg.getColumnDimension();V = new double[n][n];d = new double[n];e = new double[n];issymmetric = true;for (int j = 0; (j < n) & issymmetric; j++) {for (int i = 0; (i < n) & issymmetric; i++) {issymmetric = (A[i][j] == A[j][i]);}}if (issymmetric) {for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {V[i][j] = A[i][j];}}// Tridiagonalize.tred2();// Diagonalize.tql2();} else {H = new double[n][n];ort = new double[n];for (int j = 0; j < n; j++) {for (int i = 0; i < n; i++) {H[i][j] = A[i][j];}}// Reduce to Hessenberg form.orthes();// Reduce Hessenberg to real Schur form.hqr2();}}/* ------------------------Public Methods* ------------------------ *//** Return the eigenvector matrix@return V*/public Matrix getV () {return new Matrix(V,n,n);}/** Return the real parts of the eigenvalues@return real(diag(D))*/public double[] getRealEigenvalues () {return d;}/** Return the imaginary parts of the eigenvalues@return imag(diag(D))*/public double[] getImagEigenvalues () {return e;}/** Return the block diagonal eigenvalue matrix@return D*/public Matrix getD () {Matrix X = new Matrix(n,n);double[][] D = X.getArray();for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {D[i][j] = 0.0;}D[i][i] = d[i];if (e[i] > 0) {D[i][i+1] = e[i];} else if (e[i] < 0) {D[i][i-1] = e[i];}}return X;}private static final long serialVersionUID = 1; }

《新程序員》:云原生和全面數(shù)字化實(shí)踐50位技術(shù)專家共同創(chuàng)作,文字、視頻、音頻交互閱讀

總結(jié)

以上是生活随笔為你收集整理的java 矩阵计算 加减乘除 反转 分解的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

www国产亚洲精品久久久日本 | 99久久人妻精品免费一区 | yw尤物av无码国产在线观看 | 一本色道久久综合狠狠躁 | 天天躁夜夜躁狠狠是什么心态 | 国模大胆一区二区三区 | 国产成人无码区免费内射一片色欲 | 久久久久久九九精品久 | 三级4级全黄60分钟 | 成人av无码一区二区三区 | 台湾无码一区二区 | 婷婷五月综合缴情在线视频 | 台湾无码一区二区 | 无码一区二区三区在线观看 | 国产亚洲视频中文字幕97精品 | 对白脏话肉麻粗话av | 亚欧洲精品在线视频免费观看 | 国产精品高潮呻吟av久久 | 人妻无码αv中文字幕久久琪琪布 | 成人无码视频在线观看网站 | 激情人妻另类人妻伦 | 激情内射亚州一区二区三区爱妻 | 欧美猛少妇色xxxxx | 大地资源中文第3页 | 日韩人妻系列无码专区 | 夜精品a片一区二区三区无码白浆 | 亚洲日本在线电影 | 午夜肉伦伦影院 | 日韩人妻少妇一区二区三区 | 欧美黑人巨大xxxxx | 天天拍夜夜添久久精品 | аⅴ资源天堂资源库在线 | 成人片黄网站色大片免费观看 | 特黄特色大片免费播放器图片 | 青草视频在线播放 | 亚洲国精产品一二二线 | 水蜜桃色314在线观看 | 蜜臀aⅴ国产精品久久久国产老师 | 在线观看免费人成视频 | 国产精华av午夜在线观看 | 荫蒂被男人添的好舒服爽免费视频 | 夜先锋av资源网站 | 精品国产一区二区三区av 性色 | 亚洲欧美日韩成人高清在线一区 | 给我免费的视频在线观看 | 久久亚洲中文字幕精品一区 | 露脸叫床粗话东北少妇 | 天天躁日日躁狠狠躁免费麻豆 | 日本大乳高潮视频在线观看 | 老头边吃奶边弄进去呻吟 | 欧美人与动性行为视频 | 国产性生大片免费观看性 | 国产成人无码av在线影院 | 欧美人妻一区二区三区 | 一本久久伊人热热精品中文字幕 | 2020最新国产自产精品 | 久久久精品成人免费观看 | 激情综合激情五月俺也去 | 亚洲国产欧美日韩精品一区二区三区 | 亚洲成色在线综合网站 | 无码人妻少妇伦在线电影 | 日韩精品乱码av一区二区 | 国产av一区二区精品久久凹凸 | 国产 精品 自在自线 | 国产精品视频免费播放 | 国产尤物精品视频 | 亚洲欧美日韩国产精品一区二区 | 人人妻人人澡人人爽欧美精品 | 十八禁视频网站在线观看 | 奇米影视7777久久精品 | 四虎影视成人永久免费观看视频 | 日日橹狠狠爱欧美视频 | 日日摸日日碰夜夜爽av | 97精品人妻一区二区三区香蕉 | 国产精品久久精品三级 | 成人av无码一区二区三区 | 荡女精品导航 | 中文字幕+乱码+中文字幕一区 | 日本一本二本三区免费 | 99久久人妻精品免费一区 | 亚洲中文字幕无码一久久区 | 亚洲国产精品一区二区美利坚 | 国产精品亚洲а∨无码播放麻豆 | 动漫av一区二区在线观看 | 国产熟妇高潮叫床视频播放 | 好男人www社区 | 在线播放亚洲第一字幕 | 国产精品美女久久久 | 日本一区二区三区免费高清 | 亚洲精品国偷拍自产在线观看蜜桃 | 青青青爽视频在线观看 | 噜噜噜亚洲色成人网站 | 成人精品视频一区二区三区尤物 | 狠狠噜狠狠狠狠丁香五月 | 成人无码视频免费播放 | 东京一本一道一二三区 | 日本护士xxxxhd少妇 | 亚洲精品国偷拍自产在线观看蜜桃 | 精品久久8x国产免费观看 | 日本爽爽爽爽爽爽在线观看免 | 亚洲人成网站免费播放 | 曰韩无码二三区中文字幕 | 亚洲欧洲日本综合aⅴ在线 | 天堂在线观看www | 一本久道久久综合婷婷五月 | 久久99精品国产麻豆蜜芽 | 国产一区二区三区四区五区加勒比 | 男人和女人高潮免费网站 | 国产精品二区一区二区aⅴ污介绍 | 噜噜噜亚洲色成人网站 | 人人澡人摸人人添 | 性生交大片免费看l | 欧美三级不卡在线观看 | 亚洲国产精品一区二区第一页 | 国产人成高清在线视频99最全资源 | 无码毛片视频一区二区本码 | 亚洲精品无码国产 | 又大又黄又粗又爽的免费视频 | 亚洲国产成人av在线观看 | 久久精品人妻少妇一区二区三区 | 欧美人与禽猛交狂配 | 精品久久8x国产免费观看 | 99麻豆久久久国产精品免费 | 色综合久久久无码网中文 | 久久视频在线观看精品 | 午夜男女很黄的视频 | 欧美freesex黑人又粗又大 | 装睡被陌生人摸出水好爽 | 亚洲人成影院在线无码按摩店 | 中文字幕av无码一区二区三区电影 | 久久久久久久女国产乱让韩 | 国产精品爱久久久久久久 | 老熟妇仑乱视频一区二区 | 人妻aⅴ无码一区二区三区 | 国产无套内射久久久国产 | 内射巨臀欧美在线视频 | 欧美三级不卡在线观看 | 欧美性黑人极品hd | 天堂无码人妻精品一区二区三区 | 欧美性生交活xxxxxdddd | 亚洲综合另类小说色区 | 特级做a爰片毛片免费69 | 成人精品一区二区三区中文字幕 | 久久99精品国产麻豆蜜芽 | 亚洲人成影院在线无码按摩店 | 日本欧美一区二区三区乱码 | 精品国产av色一区二区深夜久久 | 国产人妻人伦精品 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国产精品毛多多水多 | 在线精品亚洲一区二区 | 亚洲 欧美 激情 小说 另类 | 在线播放无码字幕亚洲 | 狠狠色色综合网站 | 黑森林福利视频导航 | 国产麻豆精品一区二区三区v视界 | 丰满人妻一区二区三区免费视频 | 中文字幕av日韩精品一区二区 | 亚洲精品久久久久avwww潮水 | 国内综合精品午夜久久资源 | 国产一区二区三区精品视频 | 国产激情精品一区二区三区 | 欧美野外疯狂做受xxxx高潮 | 亚洲日韩一区二区 | 少妇太爽了在线观看 | 亚洲国产综合无码一区 | 国产av人人夜夜澡人人爽麻豆 | 久久精品女人天堂av免费观看 | 在线a亚洲视频播放在线观看 | 久久久婷婷五月亚洲97号色 | 国产香蕉尹人综合在线观看 | 夫妻免费无码v看片 | 免费观看激色视频网站 | 香蕉久久久久久av成人 | 性欧美疯狂xxxxbbbb | 国产两女互慰高潮视频在线观看 | 久久人人97超碰a片精品 | 国产成人综合在线女婷五月99播放 | 亚洲欧洲无卡二区视頻 | 天下第一社区视频www日本 | 中文字幕无码av激情不卡 | 日本高清一区免费中文视频 | 综合人妻久久一区二区精品 | 中文字幕 人妻熟女 | 东京一本一道一二三区 | 国产精品-区区久久久狼 | 成人性做爰aaa片免费看 | 久久久久免费看成人影片 | 久久精品国产一区二区三区 | 国产成人精品优优av | 国产精品.xx视频.xxtv | 成年美女黄网站色大免费全看 | 国内丰满熟女出轨videos | 国产精品二区一区二区aⅴ污介绍 | av无码电影一区二区三区 | 人妻无码αv中文字幕久久琪琪布 | 领导边摸边吃奶边做爽在线观看 | 亚洲国产精品美女久久久久 | 国产精品.xx视频.xxtv | 真人与拘做受免费视频一 | 亚洲国产一区二区三区在线观看 | 成人动漫在线观看 | 国产三级精品三级男人的天堂 | 无码国产色欲xxxxx视频 | 天天做天天爱天天爽综合网 | а√天堂www在线天堂小说 | 日日摸夜夜摸狠狠摸婷婷 | 天天摸天天碰天天添 | 亚洲精品欧美二区三区中文字幕 | 无套内谢老熟女 | 蜜桃视频插满18在线观看 | 精品国偷自产在线视频 | 亚洲中文字幕av在天堂 | 一个人看的视频www在线 | 伊人久久大香线焦av综合影院 | 日产精品高潮呻吟av久久 | 精品亚洲成av人在线观看 | 国产激情综合五月久久 | 国产精品高潮呻吟av久久 | 欧洲精品码一区二区三区免费看 | 免费男性肉肉影院 | 成 人 免费观看网站 | 永久免费观看国产裸体美女 | 国产精品亚洲五月天高清 | 色一情一乱一伦 | 乌克兰少妇xxxx做受 | 亚洲精品一区二区三区在线观看 | 野外少妇愉情中文字幕 | 国产亚洲欧美在线专区 | 久久久久久国产精品无码下载 | 色五月丁香五月综合五月 | 欧美丰满老熟妇xxxxx性 | 久久97精品久久久久久久不卡 | 久久99精品国产麻豆蜜芽 | 免费网站看v片在线18禁无码 | 色欲久久久天天天综合网精品 | 樱花草在线播放免费中文 | 国产综合久久久久鬼色 | 精品人人妻人人澡人人爽人人 | 亚洲精品一区二区三区婷婷月 | 99精品视频在线观看免费 | 狠狠躁日日躁夜夜躁2020 | 亚洲中文字幕在线观看 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 成在人线av无码免观看麻豆 | 人人澡人摸人人添 | 人妻尝试又大又粗久久 | 精品少妇爆乳无码av无码专区 | 精品国产av色一区二区深夜久久 | a在线观看免费网站大全 | av在线亚洲欧洲日产一区二区 | 青青久在线视频免费观看 | 中文字幕无码日韩专区 | 国内精品久久久久久中文字幕 | 亚洲精品www久久久 | 久久国内精品自在自线 | 国产精品无码成人午夜电影 | 欧美一区二区三区视频在线观看 | 亚洲成av人在线观看网址 | 欧美成人免费全部网站 | 少妇无码一区二区二三区 | 在线欧美精品一区二区三区 | 性开放的女人aaa片 | 中文字幕av伊人av无码av | 国产色xx群视频射精 | 亚洲一区二区观看播放 | 中文字幕无线码 | 少妇激情av一区二区 | 国产精品人人爽人人做我的可爱 | 成人欧美一区二区三区黑人免费 | 日韩精品无码免费一区二区三区 | 欧美第一黄网免费网站 | 国产日产欧产精品精品app | 综合激情五月综合激情五月激情1 | 一区二区三区乱码在线 | 欧洲 | 国产乱码精品一品二品 | 在线а√天堂中文官网 | 久久综合九色综合欧美狠狠 | 国产在线无码精品电影网 | 日本大乳高潮视频在线观看 | 无套内射视频囯产 | 88国产精品欧美一区二区三区 | 婷婷色婷婷开心五月四房播播 | 色 综合 欧美 亚洲 国产 | 久久综合久久自在自线精品自 | 麻豆av传媒蜜桃天美传媒 | 亚洲天堂2017无码中文 | 67194成是人免费无码 | 乱人伦人妻中文字幕无码 | 无码任你躁久久久久久久 | 国产精品va在线播放 | 亚洲 a v无 码免 费 成 人 a v | 国产精品va在线观看无码 | 青青久在线视频免费观看 | 国产成人精品三级麻豆 | 国产人妻精品一区二区三区不卡 | 中文字幕av伊人av无码av | 国产乱人偷精品人妻a片 | 亚洲综合另类小说色区 | 7777奇米四色成人眼影 | 日本一本二本三区免费 | 久久精品国产大片免费观看 | 国产后入清纯学生妹 | 日本丰满护士爆乳xxxx | 色婷婷综合中文久久一本 | 未满小14洗澡无码视频网站 | 国产人妖乱国产精品人妖 | 成人免费视频在线观看 | 国产午夜亚洲精品不卡 | 精品一区二区三区波多野结衣 | 国产亚洲日韩欧美另类第八页 | 国产精品永久免费视频 | 午夜精品久久久久久久 | 小泽玛莉亚一区二区视频在线 | 欧美熟妇另类久久久久久不卡 | 成人片黄网站色大片免费观看 | 好男人www社区 | 国精产品一品二品国精品69xx | 99久久精品国产一区二区蜜芽 | 日韩少妇白浆无码系列 | 欧美精品一区二区精品久久 | 色婷婷综合中文久久一本 | 久9re热视频这里只有精品 | 又大又紧又粉嫩18p少妇 | av香港经典三级级 在线 | 男人的天堂av网站 | 性欧美牲交xxxxx视频 | 中文字幕无线码 | 亚洲精品综合五月久久小说 | 亚洲男人av香蕉爽爽爽爽 | 男女下面进入的视频免费午夜 | 粉嫩少妇内射浓精videos | 午夜精品一区二区三区的区别 | 欧美兽交xxxx×视频 | 三上悠亚人妻中文字幕在线 | 国产精品久久久 | 2020久久香蕉国产线看观看 | 少妇无码一区二区二三区 | 大乳丰满人妻中文字幕日本 | 中文久久乱码一区二区 | 日日躁夜夜躁狠狠躁 | 1000部啪啪未满十八勿入下载 | 夜精品a片一区二区三区无码白浆 | aⅴ在线视频男人的天堂 | 国产精品美女久久久 | 老太婆性杂交欧美肥老太 | 国产精品福利视频导航 | 西西人体www44rt大胆高清 | 夜夜影院未满十八勿进 | 18黄暴禁片在线观看 | 97se亚洲精品一区 | 亚洲色大成网站www国产 | 亚洲欧洲无卡二区视頻 | 亚洲另类伦春色综合小说 | 欧美人妻一区二区三区 | 色婷婷欧美在线播放内射 | 大肉大捧一进一出视频出来呀 | 免费男性肉肉影院 | 国产精品久久久午夜夜伦鲁鲁 | 国产精品无码永久免费888 | 无码人妻黑人中文字幕 | 99久久精品无码一区二区毛片 | 亚洲国产高清在线观看视频 | 老头边吃奶边弄进去呻吟 | 波多野结衣av在线观看 | 人妻有码中文字幕在线 | 亚洲色偷偷男人的天堂 | 国产精品成人av在线观看 | 日日摸夜夜摸狠狠摸婷婷 | 纯爱无遮挡h肉动漫在线播放 | 国产成人久久精品流白浆 | 狠狠色欧美亚洲狠狠色www | 欧美日韩一区二区免费视频 | 免费中文字幕日韩欧美 | 国产色xx群视频射精 | 99久久亚洲精品无码毛片 | 亚洲综合无码久久精品综合 | 亚洲精品一区三区三区在线观看 | 天天做天天爱天天爽综合网 | 无码人妻出轨黑人中文字幕 | 久久aⅴ免费观看 | 日日夜夜撸啊撸 | 一区二区传媒有限公司 | 国产成人亚洲综合无码 | 国产疯狂伦交大片 | 人人爽人人爽人人片av亚洲 | 亚洲中文字幕av在天堂 | 日本饥渴人妻欲求不满 | 精品无码国产自产拍在线观看蜜 | 夜夜夜高潮夜夜爽夜夜爰爰 | 亚洲精品欧美二区三区中文字幕 | 亚洲码国产精品高潮在线 | 人人妻人人澡人人爽人人精品 | 久青草影院在线观看国产 | 人妻无码αv中文字幕久久琪琪布 | 日韩无码专区 | 国产精品无码一区二区桃花视频 | 国产精品二区一区二区aⅴ污介绍 | 日韩人妻系列无码专区 | 撕开奶罩揉吮奶头视频 | 国产美女精品一区二区三区 | 高潮毛片无遮挡高清免费视频 | 国产精品久久久一区二区三区 | 自拍偷自拍亚洲精品10p | 综合网日日天干夜夜久久 | 国产真实伦对白全集 | 久久无码中文字幕免费影院蜜桃 | 国产精品.xx视频.xxtv | 香港三级日本三级妇三级 | 性生交片免费无码看人 | 77777熟女视频在线观看 а天堂中文在线官网 | 丰满妇女强制高潮18xxxx | 久久99精品国产.久久久久 | 98国产精品综合一区二区三区 | 欧美激情一区二区三区成人 | 欧美精品无码一区二区三区 | 高潮毛片无遮挡高清免费 | 无码帝国www无码专区色综合 | 国精产品一区二区三区 | 欧美喷潮久久久xxxxx | 精品无码av一区二区三区 | 少妇一晚三次一区二区三区 | 激情内射日本一区二区三区 | 黑人巨大精品欧美一区二区 | 国产乱人伦av在线无码 | 久久精品无码一区二区三区 | 大乳丰满人妻中文字幕日本 | 精品人人妻人人澡人人爽人人 | 天堂а√在线地址中文在线 | 国产人妻久久精品二区三区老狼 | 丰满少妇高潮惨叫视频 | 成人无码视频免费播放 | 亚洲国产精品成人久久蜜臀 | 久久五月精品中文字幕 | 久久久久av无码免费网 | 国产精品久免费的黄网站 | 纯爱无遮挡h肉动漫在线播放 | 欧美午夜特黄aaaaaa片 | 日本一区二区三区免费高清 | 欧美成人家庭影院 | 亚欧洲精品在线视频免费观看 | 亚洲精品成人福利网站 | 强开小婷嫩苞又嫩又紧视频 | 又大又紧又粉嫩18p少妇 | 日韩少妇白浆无码系列 | 国产午夜亚洲精品不卡 | 在线精品国产一区二区三区 | 亚洲欧美色中文字幕在线 | 全黄性性激高免费视频 | 亚洲精品中文字幕乱码 | 7777奇米四色成人眼影 | 好男人社区资源 | 久久精品国产亚洲精品 | 亚洲日韩精品欧美一区二区 | 丰满少妇熟乱xxxxx视频 | 呦交小u女精品视频 | 久久熟妇人妻午夜寂寞影院 | 免费无码肉片在线观看 | 国产精品香蕉在线观看 | 天天爽夜夜爽夜夜爽 | 76少妇精品导航 | 九九在线中文字幕无码 | 国产真人无遮挡作爱免费视频 | 国产办公室秘书无码精品99 | 沈阳熟女露脸对白视频 | 亚洲欧美综合区丁香五月小说 | 一区二区三区乱码在线 | 欧洲 | 亚洲国产av精品一区二区蜜芽 | 国产精品内射视频免费 | 国产成人综合在线女婷五月99播放 | 131美女爱做视频 | 澳门永久av免费网站 | 国产两女互慰高潮视频在线观看 | 无码人妻精品一区二区三区不卡 | 搡女人真爽免费视频大全 | 精品国产麻豆免费人成网站 | 亚洲欧美日韩国产精品一区二区 | 小sao货水好多真紧h无码视频 | 亚洲中文无码av永久不收费 | 九九在线中文字幕无码 | 日本熟妇人妻xxxxx人hd | 无码毛片视频一区二区本码 | 人妻少妇精品久久 | 波多野结衣乳巨码无在线观看 | 俄罗斯老熟妇色xxxx | 婷婷五月综合激情中文字幕 | 免费乱码人妻系列无码专区 | 亚洲综合久久一区二区 | 久久综合色之久久综合 | 国内精品久久毛片一区二区 | 国产成人无码av一区二区 | 亚洲乱亚洲乱妇50p | 久久久中文字幕日本无吗 | 男人和女人高潮免费网站 | 噜噜噜亚洲色成人网站 | 嫩b人妻精品一区二区三区 | 思思久久99热只有频精品66 | 少妇高潮喷潮久久久影院 | 自拍偷自拍亚洲精品被多人伦好爽 | 人人澡人人透人人爽 | 亚洲欧洲日本综合aⅴ在线 | 日韩欧美中文字幕在线三区 | 色婷婷欧美在线播放内射 | 日韩无套无码精品 | 亚洲精品午夜国产va久久成人 | 色窝窝无码一区二区三区色欲 | 亚洲成av人影院在线观看 | 天下第一社区视频www日本 | 国产色xx群视频射精 | 亚洲人成人无码网www国产 | 亚洲无人区一区二区三区 | 日日麻批免费40分钟无码 | 久9re热视频这里只有精品 | 强开小婷嫩苞又嫩又紧视频 | 亚洲中文字幕无码一久久区 | 天天爽夜夜爽夜夜爽 | 国产精品人人妻人人爽 | 亚洲精品国产精品乱码不卡 | 精品久久综合1区2区3区激情 | 精品久久久无码中文字幕 | 日欧一片内射va在线影院 | 无码人妻av免费一区二区三区 | 久久久久久久久888 | av无码久久久久不卡免费网站 | 欧美精品在线观看 | 亚洲欧美综合区丁香五月小说 | 成人毛片一区二区 | 人人妻人人澡人人爽欧美一区 | 福利一区二区三区视频在线观看 | 欧美色就是色 | 日本一本二本三区免费 | 国产精品亚洲lv粉色 | 欧美成人免费全部网站 | 国产精品资源一区二区 | 免费国产黄网站在线观看 | 欧美日韩在线亚洲综合国产人 | 国产人妻精品一区二区三区不卡 | 天干天干啦夜天干天2017 | 亚洲aⅴ无码成人网站国产app | 人妻有码中文字幕在线 | 欧美三级a做爰在线观看 | 中文精品无码中文字幕无码专区 | 又粗又大又硬毛片免费看 | 亚洲 另类 在线 欧美 制服 | 国产农村妇女高潮大叫 | 思思久久99热只有频精品66 | 又大又硬又爽免费视频 | 国产国产精品人在线视 | 久久久中文久久久无码 | 偷窥日本少妇撒尿chinese | 强开小婷嫩苞又嫩又紧视频 | 美女毛片一区二区三区四区 | 亚洲小说图区综合在线 | 中文字幕无码av波多野吉衣 | 一本久久伊人热热精品中文字幕 | 国产精品久久久av久久久 | 国内老熟妇对白xxxxhd | 亚洲国产成人a精品不卡在线 | 色偷偷人人澡人人爽人人模 | 丰满肥臀大屁股熟妇激情视频 | 天天做天天爱天天爽综合网 | 暴力强奷在线播放无码 | 亚洲自偷自偷在线制服 | 国产尤物精品视频 | 亚洲精品中文字幕久久久久 | 人人妻人人澡人人爽人人精品 | 久久久久亚洲精品男人的天堂 | 久久亚洲a片com人成 | 狠狠色欧美亚洲狠狠色www | 亚洲gv猛男gv无码男同 | 久久99精品国产.久久久久 | 扒开双腿吃奶呻吟做受视频 | 国产人妻精品午夜福利免费 | 国产av久久久久精东av | 白嫩日本少妇做爰 | 丰满肥臀大屁股熟妇激情视频 | 综合激情五月综合激情五月激情1 | 曰韩无码二三区中文字幕 | 国产特级毛片aaaaaaa高清 | 乱码av麻豆丝袜熟女系列 | 日本精品少妇一区二区三区 | 成人无码精品一区二区三区 | 久久精品中文闷骚内射 | 国产午夜亚洲精品不卡 | 久久久精品国产sm最大网站 | 亚洲精品一区二区三区婷婷月 | 国产午夜手机精彩视频 | 日日摸夜夜摸狠狠摸婷婷 | 精品偷自拍另类在线观看 | 免费看少妇作爱视频 | 色一情一乱一伦一区二区三欧美 | 又大又硬又爽免费视频 | 自拍偷自拍亚洲精品10p | 欧美老妇与禽交 | 亚洲va欧美va天堂v国产综合 | 天堂一区人妻无码 | 又紧又大又爽精品一区二区 | 小sao货水好多真紧h无码视频 | 妺妺窝人体色www婷婷 | 久久精品成人欧美大片 | 无码帝国www无码专区色综合 | 5858s亚洲色大成网站www | 国产深夜福利视频在线 | 99久久久无码国产精品免费 | 亚洲阿v天堂在线 | 麻豆md0077饥渴少妇 | 免费看少妇作爱视频 | 少妇性l交大片欧洲热妇乱xxx | 久久亚洲精品中文字幕无男同 | 亚洲国产高清在线观看视频 | 国产人妻久久精品二区三区老狼 | 正在播放东北夫妻内射 | 青青青爽视频在线观看 | 国产av久久久久精东av | 撕开奶罩揉吮奶头视频 | 少妇人妻大乳在线视频 | 在线观看欧美一区二区三区 | 亚洲精品成a人在线观看 | 亚洲中文字幕成人无码 | 亚洲精品中文字幕久久久久 | 十八禁视频网站在线观看 | 午夜精品久久久内射近拍高清 | 国产人妻人伦精品1国产丝袜 | 中文字幕 人妻熟女 | 国产两女互慰高潮视频在线观看 | 扒开双腿吃奶呻吟做受视频 | 99久久婷婷国产综合精品青草免费 | 夫妻免费无码v看片 | 国产真实伦对白全集 | 国产超级va在线观看视频 | 免费播放一区二区三区 | 亚洲综合无码一区二区三区 | 亚洲经典千人经典日产 | 四虎国产精品免费久久 | 水蜜桃亚洲一二三四在线 | 久久亚洲中文字幕无码 | 亚洲精品一区二区三区大桥未久 | 亚洲国产午夜精品理论片 | 国产手机在线αⅴ片无码观看 | 少妇高潮一区二区三区99 | 久热国产vs视频在线观看 | 久久久精品成人免费观看 | 精品熟女少妇av免费观看 | 人人妻人人澡人人爽人人精品 | 欧美性黑人极品hd | 激情综合激情五月俺也去 | 婷婷六月久久综合丁香 | 熟妇激情内射com | 亚洲中文无码av永久不收费 | 亚洲一区二区三区国产精华液 | 久久天天躁狠狠躁夜夜免费观看 | 又色又爽又黄的美女裸体网站 | 精品国产aⅴ无码一区二区 | 亚洲人成无码网www | 狠狠躁日日躁夜夜躁2020 | 精品人人妻人人澡人人爽人人 | 久久综合给久久狠狠97色 | 精品一二三区久久aaa片 | 久久亚洲国产成人精品性色 | 亚洲精品国偷拍自产在线麻豆 | 成年女人永久免费看片 | 久久综合给合久久狠狠狠97色 | 中文字幕av无码一区二区三区电影 | 亚洲欧美日韩成人高清在线一区 | 欧美自拍另类欧美综合图片区 | 精品无码一区二区三区爱欲 | 99久久精品午夜一区二区 | 亚洲а∨天堂久久精品2021 | 伊人久久大香线蕉亚洲 | 熟妇女人妻丰满少妇中文字幕 | 国产舌乚八伦偷品w中 | 内射白嫩少妇超碰 | 熟女少妇人妻中文字幕 | 国产成人无码一二三区视频 | 草草网站影院白丝内射 | 人妻少妇被猛烈进入中文字幕 | 中文精品无码中文字幕无码专区 | 国语自产偷拍精品视频偷 | 久久精品女人天堂av免费观看 | 国产精品久久久午夜夜伦鲁鲁 | 国産精品久久久久久久 | 999久久久国产精品消防器材 | 成人综合网亚洲伊人 | 无码国产色欲xxxxx视频 | 欧美国产亚洲日韩在线二区 | www国产亚洲精品久久久日本 | 黄网在线观看免费网站 | 色欲综合久久中文字幕网 | 亚洲精品国偷拍自产在线观看蜜桃 | 亚洲精品美女久久久久久久 | 欧美大屁股xxxxhd黑色 | 成 人 免费观看网站 | 无码任你躁久久久久久久 | 亚洲热妇无码av在线播放 | 国产精品无码一区二区桃花视频 | 装睡被陌生人摸出水好爽 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 日韩av激情在线观看 | 中文精品久久久久人妻不卡 | 蜜臀av无码人妻精品 | 精品国产一区二区三区四区在线看 | 人人妻人人澡人人爽欧美精品 | 扒开双腿疯狂进出爽爽爽视频 | 狠狠色噜噜狠狠狠狠7777米奇 | 亚洲一区二区三区在线观看网站 | 内射后入在线观看一区 | 美女扒开屁股让男人桶 | 影音先锋中文字幕无码 | 人妻体内射精一区二区三四 | 久久精品国产99精品亚洲 | 熟妇女人妻丰满少妇中文字幕 | 成人aaa片一区国产精品 | 久久天天躁狠狠躁夜夜免费观看 | 人妻中文无码久热丝袜 | 国产熟女一区二区三区四区五区 | 国产精品亚洲五月天高清 | 久久99精品国产麻豆蜜芽 | 中文字幕人妻丝袜二区 | 麻花豆传媒剧国产免费mv在线 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 无码帝国www无码专区色综合 | 岛国片人妻三上悠亚 | 午夜无码人妻av大片色欲 | 久久99精品久久久久婷婷 | 国产精品18久久久久久麻辣 | 真人与拘做受免费视频 | 内射欧美老妇wbb | 在线精品国产一区二区三区 | 综合激情五月综合激情五月激情1 | 成人一区二区免费视频 | 色情久久久av熟女人妻网站 | 国产一区二区三区精品视频 | 无码人妻出轨黑人中文字幕 | 成人毛片一区二区 | 国产区女主播在线观看 | 国产亚洲精品久久久ai换 | 久久五月精品中文字幕 | 粉嫩少妇内射浓精videos | 亚洲熟妇色xxxxx欧美老妇 | 国产福利视频一区二区 | 国产suv精品一区二区五 | 亚洲熟女一区二区三区 | 一本加勒比波多野结衣 | 强辱丰满人妻hd中文字幕 | 日本一区二区三区免费高清 | 小sao货水好多真紧h无码视频 | 婷婷色婷婷开心五月四房播播 | 久久精品一区二区三区四区 | 国产电影无码午夜在线播放 | 性生交大片免费看l | 成年美女黄网站色大免费全看 | 亚洲熟妇色xxxxx欧美老妇 | 在线播放无码字幕亚洲 | 免费人成在线视频无码 | 国产亚洲人成a在线v网站 | 色一情一乱一伦一区二区三欧美 | 国产成人精品优优av | 7777奇米四色成人眼影 | 熟女少妇在线视频播放 | 国产精品国产三级国产专播 | 老司机亚洲精品影院 | 国产真实夫妇视频 | 成人影院yy111111在线观看 | 国产午夜亚洲精品不卡 | 少妇高潮一区二区三区99 | 亚洲午夜久久久影院 | 在线看片无码永久免费视频 | 国产免费无码一区二区视频 | aⅴ在线视频男人的天堂 | 极品尤物被啪到呻吟喷水 | 亚洲精品久久久久久一区二区 | 久久久久成人精品免费播放动漫 | 欧美日韩亚洲国产精品 | 强辱丰满人妻hd中文字幕 | 中文字幕无码免费久久9一区9 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 精品无人国产偷自产在线 | 国产性生大片免费观看性 | 日本精品人妻无码免费大全 | 国产乱人伦av在线无码 | 无码精品国产va在线观看dvd | 无码国模国产在线观看 | 午夜福利一区二区三区在线观看 | 99在线 | 亚洲 | 大肉大捧一进一出好爽视频 | 免费无码的av片在线观看 | 女人色极品影院 | 大乳丰满人妻中文字幕日本 | 中文字幕无码免费久久99 | 成人一在线视频日韩国产 | 成人无码精品1区2区3区免费看 | 俄罗斯老熟妇色xxxx | 蜜桃视频韩日免费播放 | 国产办公室秘书无码精品99 | 天干天干啦夜天干天2017 | 亚拍精品一区二区三区探花 | 欧美三级不卡在线观看 | 欧美一区二区三区 | 18禁黄网站男男禁片免费观看 | 福利一区二区三区视频在线观看 | 成熟妇人a片免费看网站 | 亚洲自偷自拍另类第1页 | 乱码av麻豆丝袜熟女系列 | 一个人看的视频www在线 | 日本xxxx色视频在线观看免费 | 国产免费观看黄av片 | 黑人粗大猛烈进出高潮视频 | 大肉大捧一进一出好爽视频 | www成人国产高清内射 | 国产乱人伦av在线无码 | 色老头在线一区二区三区 | 国产超碰人人爽人人做人人添 | 亚洲日韩一区二区 | 亚洲国产精品久久久天堂 | 日日天干夜夜狠狠爱 | 99国产精品白浆在线观看免费 | 国产69精品久久久久app下载 | 无码av中文字幕免费放 | 扒开双腿吃奶呻吟做受视频 | 亚洲毛片av日韩av无码 | 国产亚洲日韩欧美另类第八页 | 欧美性生交活xxxxxdddd | 国产精品亚洲一区二区三区喷水 | 中文字幕无线码免费人妻 | 国产精品内射视频免费 | 亚洲人成网站色7799 | 日本免费一区二区三区最新 | 色情久久久av熟女人妻网站 | 亚洲伊人久久精品影院 | 国产精品亚洲专区无码不卡 | 成人精品天堂一区二区三区 | 天下第一社区视频www日本 | 扒开双腿吃奶呻吟做受视频 | 日韩 欧美 动漫 国产 制服 | 亚洲一区av无码专区在线观看 | 久久五月精品中文字幕 | 在线观看国产午夜福利片 | 九一九色国产 | 国产精品美女久久久网av | 日韩亚洲欧美精品综合 | 国产激情艳情在线看视频 | 亚洲中文字幕无码中字 | 国产精品沙发午睡系列 | 久久精品中文字幕大胸 | 成人无码影片精品久久久 | 樱花草在线社区www | 久久久久久久人妻无码中文字幕爆 | 3d动漫精品啪啪一区二区中 | 未满小14洗澡无码视频网站 | 亚洲国产午夜精品理论片 | 一本大道伊人av久久综合 | 亚洲第一无码av无码专区 | 久久久久人妻一区精品色欧美 | 久久精品99久久香蕉国产色戒 | 久久99精品久久久久婷婷 | 97色伦图片97综合影院 | 中文字幕 亚洲精品 第1页 | 亚洲午夜久久久影院 | 亚洲精品一区二区三区婷婷月 | а√天堂www在线天堂小说 | 精品夜夜澡人妻无码av蜜桃 | 伊人久久婷婷五月综合97色 | 亚洲自偷自偷在线制服 | 中文字幕av伊人av无码av | 无套内谢的新婚少妇国语播放 | 精品久久久中文字幕人妻 | 国产高潮视频在线观看 | 国产乱码精品一品二品 | 激情综合激情五月俺也去 | 国产精品办公室沙发 | 亚洲码国产精品高潮在线 | 乱人伦人妻中文字幕无码 | 高潮毛片无遮挡高清免费 | 东京热一精品无码av | 中文字幕无码日韩专区 | 老子影院午夜精品无码 | 亚洲狠狠婷婷综合久久 | 久久精品国产精品国产精品污 | 女人被男人爽到呻吟的视频 | 熟妇人妻无码xxx视频 | 一区二区三区高清视频一 | 男女爱爱好爽视频免费看 | 国产在线精品一区二区高清不卡 | 国产亚洲tv在线观看 | 久久99久久99精品中文字幕 | 好爽又高潮了毛片免费下载 | 久久久中文字幕日本无吗 | 红桃av一区二区三区在线无码av | 99久久久无码国产aaa精品 | 国产成人精品无码播放 | 高潮喷水的毛片 | 激情国产av做激情国产爱 | 一本久道久久综合婷婷五月 | 强开小婷嫩苞又嫩又紧视频 | 色窝窝无码一区二区三区色欲 | 黄网在线观看免费网站 | 久热国产vs视频在线观看 | 欧美精品在线观看 | 婷婷丁香五月天综合东京热 | 精品国产一区二区三区av 性色 | 草草网站影院白丝内射 | 亚洲gv猛男gv无码男同 | 国产欧美精品一区二区三区 | 性色欲网站人妻丰满中文久久不卡 | 国产人妖乱国产精品人妖 | 精品亚洲成av人在线观看 | 成在人线av无码免观看麻豆 | 97夜夜澡人人双人人人喊 | 小sao货水好多真紧h无码视频 | 久久精品中文字幕一区 | 国产av一区二区精品久久凹凸 | 少妇人妻偷人精品无码视频 | 一本久道久久综合婷婷五月 | 欧美性黑人极品hd | 亚洲综合伊人久久大杳蕉 | 女人被男人躁得好爽免费视频 | 九九久久精品国产免费看小说 | 女人被男人躁得好爽免费视频 | 一本大道久久东京热无码av | 亚洲精品成人av在线 | 亚洲精品成a人在线观看 | 中文字幕无线码 | 亚洲精品国产品国语在线观看 | 亚洲成av人综合在线观看 | 国产一区二区三区影院 | 人妻体内射精一区二区三四 | 色婷婷欧美在线播放内射 | 成 人 免费观看网站 | 97久久超碰中文字幕 | 午夜熟女插插xx免费视频 | 精品无码一区二区三区的天堂 | 久久久久成人片免费观看蜜芽 | 欧洲熟妇色 欧美 | 任你躁国产自任一区二区三区 | 老司机亚洲精品影院 | 国产成人无码a区在线观看视频app | 亚洲 a v无 码免 费 成 人 a v | 国产精华av午夜在线观看 | 无码任你躁久久久久久久 | 东京热一精品无码av | 国产精品自产拍在线观看 | 久久久久人妻一区精品色欧美 | 一本精品99久久精品77 | 麻豆成人精品国产免费 | 日产国产精品亚洲系列 | 无码纯肉视频在线观看 | 久久精品女人天堂av免费观看 | 九九热爱视频精品 | 丰满岳乱妇在线观看中字无码 | 成人综合网亚洲伊人 | 粗大的内捧猛烈进出视频 | 麻豆国产人妻欲求不满 | 亚洲精品一区二区三区婷婷月 | 全球成人中文在线 | 无码帝国www无码专区色综合 | 精品国偷自产在线视频 | 性欧美牲交在线视频 | 日本高清一区免费中文视频 | 国产精品久久久久久亚洲毛片 | 欧美老妇与禽交 | 中文字幕乱码亚洲无线三区 | 国产suv精品一区二区五 | 蜜桃视频插满18在线观看 | 国产电影无码午夜在线播放 | 成人免费无码大片a毛片 | 日本欧美一区二区三区乱码 | 蜜桃视频韩日免费播放 | 97精品人妻一区二区三区香蕉 | 大乳丰满人妻中文字幕日本 | 久久综合激激的五月天 | 中文字幕无码免费久久9一区9 | 亚洲国产欧美国产综合一区 | 久久精品成人欧美大片 | 无码人妻丰满熟妇区五十路百度 | 精品国产一区二区三区av 性色 | 丝袜美腿亚洲一区二区 | 国语精品一区二区三区 | 国内少妇偷人精品视频免费 | a在线观看免费网站大全 | 色一情一乱一伦一视频免费看 | 色欲人妻aaaaaaa无码 | 日产精品99久久久久久 | 国产精品久久久久久亚洲影视内衣 | 无码人妻av免费一区二区三区 | 国产一区二区三区四区五区加勒比 | 偷窥村妇洗澡毛毛多 | 99久久人妻精品免费一区 | 国内综合精品午夜久久资源 | 亚洲成av人在线观看网址 | 亚洲精品国产第一综合99久久 | 国内精品一区二区三区不卡 | 激情内射亚州一区二区三区爱妻 | 国产日产欧产精品精品app | 波多野结衣av在线观看 | 老头边吃奶边弄进去呻吟 | 国产另类ts人妖一区二区 | 国内精品久久久久久中文字幕 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产精品久久久久无码av色戒 | 国产精品va在线观看无码 | 国内丰满熟女出轨videos | 无码人妻黑人中文字幕 | 在线天堂新版最新版在线8 | 少妇无码一区二区二三区 | 在线观看欧美一区二区三区 | 天天做天天爱天天爽综合网 | 天海翼激烈高潮到腰振不止 | 国产成人无码一二三区视频 | 98国产精品综合一区二区三区 | 成人免费视频在线观看 | 国产国语老龄妇女a片 | 人人妻在人人 | 爽爽影院免费观看 | 人妻少妇精品视频专区 | 鲁鲁鲁爽爽爽在线视频观看 | 性欧美熟妇videofreesex | 亚洲一区二区三区无码久久 | 国产人妻人伦精品1国产丝袜 | 午夜福利不卡在线视频 | 亚洲欧美日韩国产精品一区二区 | 日本又色又爽又黄的a片18禁 | 中文字幕人妻无码一夲道 | 亚洲精品国偷拍自产在线观看蜜桃 | 成人无码精品一区二区三区 | 国产手机在线αⅴ片无码观看 | 蜜臀av在线播放 久久综合激激的五月天 | 日韩av无码一区二区三区 | 99精品视频在线观看免费 | 久久国产精品萌白酱免费 | 狠狠色丁香久久婷婷综合五月 | 无码人妻黑人中文字幕 | 白嫩日本少妇做爰 | 精品厕所偷拍各类美女tp嘘嘘 | 无人区乱码一区二区三区 | 初尝人妻少妇中文字幕 | 日日橹狠狠爱欧美视频 | 成人片黄网站色大片免费观看 | 国产亚洲人成在线播放 | 麻豆精产国品 | 内射老妇bbwx0c0ck | 老熟女乱子伦 | 国产深夜福利视频在线 | 国产在线精品一区二区三区直播 | 国产精品嫩草久久久久 | 俺去俺来也www色官网 | 高潮毛片无遮挡高清免费视频 | 人妻天天爽夜夜爽一区二区 | 300部国产真实乱 | 午夜精品久久久内射近拍高清 | 亚洲国产欧美国产综合一区 | 岛国片人妻三上悠亚 | 国产高清av在线播放 | 丰满人妻精品国产99aⅴ | 日本免费一区二区三区最新 | 台湾无码一区二区 | 亚洲精品久久久久中文第一幕 | 日韩av无码中文无码电影 | 一本久久a久久精品亚洲 | 搡女人真爽免费视频大全 | 成人片黄网站色大片免费观看 | 成熟女人特级毛片www免费 | 清纯唯美经典一区二区 | 欧美 日韩 亚洲 在线 | 久久人人爽人人人人片 | 欧美一区二区三区 | 欧美日本精品一区二区三区 | 成人免费无码大片a毛片 | 一二三四社区在线中文视频 | 久久综合色之久久综合 | 久久精品人妻少妇一区二区三区 | 色五月丁香五月综合五月 | 国产色视频一区二区三区 | 精品久久久无码人妻字幂 | 国产欧美精品一区二区三区 | 国产明星裸体无码xxxx视频 | 久久久成人毛片无码 | 乌克兰少妇xxxx做受 | 一本色道久久综合亚洲精品不卡 | 性做久久久久久久久 | 无人区乱码一区二区三区 | 兔费看少妇性l交大片免费 | 久久人人爽人人爽人人片av高清 | 免费播放一区二区三区 | 一本久道高清无码视频 | 国产av无码专区亚洲awww | 波多野结衣一区二区三区av免费 | 国内精品一区二区三区不卡 | 国产97在线 | 亚洲 | 久久久久久久久蜜桃 | 国产人成高清在线视频99最全资源 | 色欲人妻aaaaaaa无码 | 欧美人与禽猛交狂配 | 东京一本一道一二三区 | 国产色精品久久人妻 | 日本在线高清不卡免费播放 | 精品亚洲成av人在线观看 | 免费看少妇作爱视频 | 精品成人av一区二区三区 | 欧美性猛交xxxx富婆 | 色综合久久久无码网中文 | 一区二区三区乱码在线 | 欧洲 | 撕开奶罩揉吮奶头视频 | 久久久久亚洲精品中文字幕 | a在线亚洲男人的天堂 | 无码国产激情在线观看 | 激情内射亚州一区二区三区爱妻 | 国产极品美女高潮无套在线观看 | 国产精华av午夜在线观看 | 牛和人交xxxx欧美 | 色妞www精品免费视频 | 鲁鲁鲁爽爽爽在线视频观看 | 久久综合给合久久狠狠狠97色 | 在线看片无码永久免费视频 | 动漫av网站免费观看 | 成人女人看片免费视频放人 | 老熟女乱子伦 | 日韩欧美中文字幕公布 | 亚洲最大成人网站 | 国产黑色丝袜在线播放 | 狠狠cao日日穞夜夜穞av | 亚洲色欲久久久综合网东京热 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 精品国偷自产在线 | 小sao货水好多真紧h无码视频 | 大胆欧美熟妇xx | 午夜无码人妻av大片色欲 | 国产精品亚洲lv粉色 | 国产精品第一国产精品 | 亚洲天堂2017无码中文 | 国产精品无码一区二区桃花视频 | 牲欲强的熟妇农村老妇女 | 少妇高潮喷潮久久久影院 | 丰腴饱满的极品熟妇 | 少妇太爽了在线观看 | 国产亚洲欧美在线专区 | a在线观看免费网站大全 | 免费无码一区二区三区蜜桃大 | 成人免费视频一区二区 | 精品国产一区av天美传媒 | 狂野欧美激情性xxxx | 国产精品嫩草久久久久 | 亚洲综合另类小说色区 | 人人澡人摸人人添 | 一区二区三区乱码在线 | 欧洲 | 无遮挡啪啪摇乳动态图 | 激情五月综合色婷婷一区二区 | 波多野结衣一区二区三区av免费 | 午夜时刻免费入口 | 成熟妇人a片免费看网站 | 亚洲aⅴ无码成人网站国产app | 精品久久久久久人妻无码中文字幕 | 亚洲精品无码国产 | 国产精品99久久精品爆乳 | 国产福利视频一区二区 | 奇米影视7777久久精品人人爽 | 欧美日本精品一区二区三区 | 中文字幕无码人妻少妇免费 | 一二三四在线观看免费视频 | 欧美三级a做爰在线观看 | 国产精品手机免费 | 高中生自慰www网站 | 日本精品人妻无码77777 天堂一区人妻无码 | 久久99精品久久久久婷婷 | 亚洲成色在线综合网站 | 精品国偷自产在线视频 | 日韩视频 中文字幕 视频一区 | 2019午夜福利不卡片在线 | 夜夜夜高潮夜夜爽夜夜爰爰 | 久久午夜无码鲁丝片秋霞 | 中文字幕无码日韩专区 | 亚洲国产成人a精品不卡在线 | 成人精品天堂一区二区三区 | 亚洲一区二区三区香蕉 | 国产色xx群视频射精 | 国产黄在线观看免费观看不卡 | 乱人伦中文视频在线观看 | 亚洲成av人在线观看网址 | 亚洲s码欧洲m码国产av | 熟妇人妻无乱码中文字幕 | 又粗又大又硬又长又爽 | 国产97在线 | 亚洲 | 永久黄网站色视频免费直播 | 啦啦啦www在线观看免费视频 | 午夜精品久久久久久久久 | 精品午夜福利在线观看 | 自拍偷自拍亚洲精品10p | 在线成人www免费观看视频 | 青春草在线视频免费观看 | 无码人妻av免费一区二区三区 | 欧美日韩人成综合在线播放 | 国产尤物精品视频 | 国产精品久久国产精品99 | 国产热a欧美热a在线视频 | 少妇厨房愉情理9仑片视频 | 久久99热只有频精品8 | 亚洲aⅴ无码成人网站国产app | 日日麻批免费40分钟无码 | 成熟女人特级毛片www免费 | 亚洲精品一区国产 | 亚洲码国产精品高潮在线 | 国产尤物精品视频 | 亚洲色欲色欲天天天www | 国产suv精品一区二区五 | 久久国语露脸国产精品电影 | 麻花豆传媒剧国产免费mv在线 | 久久久精品成人免费观看 | 思思久久99热只有频精品66 | 人人爽人人澡人人人妻 | 精品久久8x国产免费观看 | 久久精品国产日本波多野结衣 | 亚洲欧美综合区丁香五月小说 | 天堂а√在线中文在线 | 老熟妇乱子伦牲交视频 | 思思久久99热只有频精品66 | 99久久99久久免费精品蜜桃 | 5858s亚洲色大成网站www | 激情内射日本一区二区三区 | 狠狠噜狠狠狠狠丁香五月 | 97夜夜澡人人爽人人喊中国片 | 高潮毛片无遮挡高清免费 | 国产成人精品三级麻豆 | 国产性生交xxxxx无码 | 伊人久久大香线焦av综合影院 | 精品成在人线av无码免费看 | 亚洲精品一区二区三区四区五区 | 欧美老熟妇乱xxxxx | 国产xxx69麻豆国语对白 | 午夜熟女插插xx免费视频 | 乱人伦中文视频在线观看 | 国产免费观看黄av片 | 亚洲中文字幕乱码av波多ji | 日日天日日夜日日摸 | 特黄特色大片免费播放器图片 | 成在人线av无码免观看麻豆 | 亚洲中文字幕在线观看 | 亚洲爆乳无码专区 | 国产成人精品三级麻豆 | 亚洲啪av永久无码精品放毛片 | 少妇性荡欲午夜性开放视频剧场 | 欧美成人家庭影院 | 免费无码的av片在线观看 | aⅴ亚洲 日韩 色 图网站 播放 | 夜先锋av资源网站 | 麻豆精产国品 | 亚洲日韩精品欧美一区二区 | 国产亚洲精品久久久ai换 | 人妻无码久久精品人妻 | 久久精品中文闷骚内射 | 人妻与老人中文字幕 | 国产精品久久久一区二区三区 | 少妇的肉体aa片免费 | 亚洲色欲色欲天天天www | 精品国产一区av天美传媒 | 精品夜夜澡人妻无码av蜜桃 | 亚洲国产欧美国产综合一区 | 人人澡人人妻人人爽人人蜜桃 | 最新版天堂资源中文官网 | 国产无套内射久久久国产 | 18无码粉嫩小泬无套在线观看 | 久久精品人妻少妇一区二区三区 | 无码国产色欲xxxxx视频 | 国产黑色丝袜在线播放 | 丰满人妻被黑人猛烈进入 | 久久久久久久人妻无码中文字幕爆 | 免费视频欧美无人区码 | 久久国产精品_国产精品 | 精品亚洲韩国一区二区三区 | 激情内射亚州一区二区三区爱妻 | 高清不卡一区二区三区 | 亚洲小说图区综合在线 | 亚洲第一网站男人都懂 | 午夜无码人妻av大片色欲 | 免费网站看v片在线18禁无码 | 亚洲中文字幕va福利 | 婷婷色婷婷开心五月四房播播 | 无码人妻av免费一区二区三区 | 国产特级毛片aaaaaa高潮流水 | 久久综合久久自在自线精品自 | 精品国偷自产在线 | 日本精品人妻无码免费大全 | 久久久久亚洲精品中文字幕 | 久久久久se色偷偷亚洲精品av | 蜜桃视频插满18在线观看 | 午夜无码人妻av大片色欲 | 夜精品a片一区二区三区无码白浆 | 久久久精品456亚洲影院 | 久久99久久99精品中文字幕 | 亚洲gv猛男gv无码男同 | 国产激情艳情在线看视频 | 久久久精品人妻久久影视 | 亚洲男女内射在线播放 | 欧美成人家庭影院 | 中文字幕无码av波多野吉衣 | 亚欧洲精品在线视频免费观看 | 领导边摸边吃奶边做爽在线观看 | 色综合久久久无码中文字幕 | 久久久久久久人妻无码中文字幕爆 | 亚洲精品国偷拍自产在线观看蜜桃 | 国产亚洲人成在线播放 | 精品国产一区av天美传媒 | 99久久无码一区人妻 | 无遮挡啪啪摇乳动态图 | 精品一区二区三区波多野结衣 | 久久久精品国产sm最大网站 | 亚洲国产精品毛片av不卡在线 | 精品日本一区二区三区在线观看 | 丰满少妇高潮惨叫视频 | 九月婷婷人人澡人人添人人爽 | 99久久久无码国产精品免费 | 久热国产vs视频在线观看 | 亚洲欧美中文字幕5发布 | 久久精品女人的天堂av | 国产人妖乱国产精品人妖 | 欧美三级a做爰在线观看 | 人人爽人人爽人人片av亚洲 | 少妇无码一区二区二三区 | 亚洲码国产精品高潮在线 | 亚无码乱人伦一区二区 | 亚洲一区二区三区在线观看网站 | 国内少妇偷人精品视频免费 | 55夜色66夜色国产精品视频 | 亚洲一区二区三区播放 | 亚洲国产精品成人久久蜜臀 | 黑人巨大精品欧美黑寡妇 | 欧美丰满老熟妇xxxxx性 | 无码精品国产va在线观看dvd | 丰满少妇弄高潮了www | 亚洲国产精品一区二区美利坚 | 国产精品无码久久av | 丰满人妻被黑人猛烈进入 | 亚洲成色在线综合网站 | 丝袜足控一区二区三区 | 熟妇人妻无乱码中文字幕 | 丰满人妻一区二区三区免费视频 | 亚洲va欧美va天堂v国产综合 | 亚洲精品国产品国语在线观看 | 国内揄拍国内精品少妇国语 | 娇妻被黑人粗大高潮白浆 | 国色天香社区在线视频 | 久久精品国产大片免费观看 | 久久精品人妻少妇一区二区三区 | 中文字幕av伊人av无码av | 日韩人妻少妇一区二区三区 | 国产精品久久久久久亚洲毛片 | 精品人妻人人做人人爽 | 成熟女人特级毛片www免费 | 久久国产精品萌白酱免费 | 久久国产精品精品国产色婷婷 | 国产成人无码av一区二区 | 中文字幕人成乱码熟女app | 久在线观看福利视频 | 成在人线av无码免费 | 亚洲国产一区二区三区在线观看 | 激情内射日本一区二区三区 | 一区二区三区高清视频一 | 久久久久久久久蜜桃 | 蜜桃视频韩日免费播放 | 亚洲一区二区观看播放 | 久久精品中文闷骚内射 | 丰满人妻被黑人猛烈进入 | 久久午夜无码鲁丝片秋霞 | 少妇太爽了在线观看 | 黑人巨大精品欧美黑寡妇 | 激情国产av做激情国产爱 | 55夜色66夜色国产精品视频 | 久久久国产一区二区三区 | 色婷婷香蕉在线一区二区 | 少妇无套内谢久久久久 | 亚洲 激情 小说 另类 欧美 | 成人精品视频一区二区 | 欧美阿v高清资源不卡在线播放 | 无遮挡国产高潮视频免费观看 | 亚洲日本一区二区三区在线 | 亚洲精品国产第一综合99久久 | 欧洲vodafone精品性 | 欧美精品国产综合久久 | 久久成人a毛片免费观看网站 | 日韩av激情在线观看 | 天天综合网天天综合色 | 精品无码av一区二区三区 | 我要看www免费看插插视频 | 中国女人内谢69xxxxxa片 | 人妻少妇精品无码专区动漫 | 亚洲人交乣女bbw | 欧美 丝袜 自拍 制服 另类 | a在线观看免费网站大全 | 中文字幕无码热在线视频 | 蜜桃臀无码内射一区二区三区 | 无码毛片视频一区二区本码 | 大地资源网第二页免费观看 | 77777熟女视频在线观看 а天堂中文在线官网 | 无码人妻精品一区二区三区下载 | 99久久人妻精品免费二区 | 午夜性刺激在线视频免费 | 日本丰满熟妇videos | 久久综合九色综合97网 | 成在人线av无码免费 | 中文字幕无码免费久久9一区9 | 久久精品人人做人人综合试看 | 国产精品亚洲一区二区三区喷水 | 丰满人妻被黑人猛烈进入 | 精品国产一区av天美传媒 | 免费播放一区二区三区 | 美女毛片一区二区三区四区 | 亚洲日本在线电影 | 一本精品99久久精品77 | 狠狠综合久久久久综合网 | 国产成人综合美国十次 | 中文字幕精品av一区二区五区 | 日本精品高清一区二区 | 香港三级日本三级妇三级 | 天天做天天爱天天爽综合网 | 亚拍精品一区二区三区探花 | 国产人妻精品一区二区三区 | 亚洲a无码综合a国产av中文 | 欧美第一黄网免费网站 | 99久久婷婷国产综合精品青草免费 | 18精品久久久无码午夜福利 | 国产人妻精品一区二区三区不卡 | 国产综合在线观看 | 国产成人无码a区在线观看视频app | 国产成人无码av在线影院 | 久久国产自偷自偷免费一区调 | 国产精品亚洲专区无码不卡 | 麻豆av传媒蜜桃天美传媒 | 亚洲 日韩 欧美 成人 在线观看 | 欧美日韩色另类综合 | 欧美三级a做爰在线观看 | 又大又硬又爽免费视频 | 玩弄人妻少妇500系列视频 | 亚洲中文字幕在线无码一区二区 | 乱人伦中文视频在线观看 | 色综合久久中文娱乐网 | 人人爽人人爽人人片av亚洲 | 最新版天堂资源中文官网 | 一区二区传媒有限公司 | 国产又粗又硬又大爽黄老大爷视 | 国产精品国产三级国产专播 | 欧美怡红院免费全部视频 | 少妇久久久久久人妻无码 | 中国女人内谢69xxxxxa片 | 日韩少妇白浆无码系列 | 奇米影视7777久久精品 | 亚洲欧美综合区丁香五月小说 | 无码免费一区二区三区 | 国产乱码精品一品二品 | 亚洲经典千人经典日产 | 国产精品无码mv在线观看 | 精品国产精品久久一区免费式 | 午夜无码区在线观看 | 亚洲中文字幕va福利 | 亚洲精品一区二区三区大桥未久 | 亚洲无人区一区二区三区 | 麻豆国产人妻欲求不满谁演的 | 人人爽人人澡人人人妻 | 大地资源中文第3页 | 无遮挡啪啪摇乳动态图 | 大地资源网第二页免费观看 | 天天综合网天天综合色 | 亚洲色偷偷男人的天堂 | 西西人体www44rt大胆高清 | 婷婷综合久久中文字幕蜜桃三电影 | 久久久国产一区二区三区 | 丝袜美腿亚洲一区二区 | 亚洲欧美色中文字幕在线 | 日韩在线不卡免费视频一区 | 国产精华av午夜在线观看 | 国产欧美熟妇另类久久久 | 人妻少妇被猛烈进入中文字幕 | 男人扒开女人内裤强吻桶进去 | 老头边吃奶边弄进去呻吟 | 久久国产劲爆∧v内射 | 波多野结衣av在线观看 | 草草网站影院白丝内射 | 国产无套内射久久久国产 | 少妇太爽了在线观看 | 亚洲中文字幕无码一久久区 | 黑人巨大精品欧美一区二区 | 欧洲欧美人成视频在线 | 亚洲色www成人永久网址 | 中文字幕乱码人妻无码久久 | 中文无码伦av中文字幕 | 性开放的女人aaa片 | 国产精品多人p群无码 | 亚洲国产欧美国产综合一区 | 久久午夜夜伦鲁鲁片无码免费 | 人妻少妇精品无码专区动漫 | 亚洲国产精品美女久久久久 | 午夜精品久久久久久久久 | 国产成人精品久久亚洲高清不卡 | 亚洲精品久久久久久一区二区 | 黄网在线观看免费网站 | 中文无码成人免费视频在线观看 | 亚洲国精产品一二二线 | 亚洲中文字幕无码中字 | 久久久久久av无码免费看大片 | 欧美性生交xxxxx久久久 | 国产乡下妇女做爰 | 一本久道久久综合狠狠爱 | 色情久久久av熟女人妻网站 | 永久免费精品精品永久-夜色 | 久久天天躁夜夜躁狠狠 | 久久久久免费精品国产 | 亚洲精品一区二区三区四区五区 | 久久zyz资源站无码中文动漫 | 中文精品无码中文字幕无码专区 | 伦伦影院午夜理论片 | 曰韩少妇内射免费播放 | 成人性做爰aaa片免费看不忠 | 高清不卡一区二区三区 | 国产精品鲁鲁鲁 | 水蜜桃色314在线观看 | 欧美35页视频在线观看 | 久激情内射婷内射蜜桃人妖 | 亚洲精品久久久久久一区二区 | 一本久道高清无码视频 | 国产欧美熟妇另类久久久 | 国产熟妇高潮叫床视频播放 | 国产成人一区二区三区在线观看 | 无码精品国产va在线观看dvd | 男人扒开女人内裤强吻桶进去 | 亚洲色偷偷男人的天堂 | 无码人妻精品一区二区三区不卡 | 国产成人人人97超碰超爽8 | 国产一区二区不卡老阿姨 | 九九在线中文字幕无码 | 丰满人妻精品国产99aⅴ | 丰满人妻一区二区三区免费视频 | 国产乱人偷精品人妻a片 | 欧美 丝袜 自拍 制服 另类 | 玩弄中年熟妇正在播放 | 国产精品久久国产三级国 | 国产农村妇女高潮大叫 | 国产精品自产拍在线观看 | 国产无遮挡又黄又爽又色 | 丰满妇女强制高潮18xxxx | 国产午夜精品一区二区三区嫩草 | 国产精品a成v人在线播放 | 国产香蕉尹人综合在线观看 | 亚洲自偷精品视频自拍 | 一本久道高清无码视频 | 澳门永久av免费网站 | 国产激情精品一区二区三区 | 欧美喷潮久久久xxxxx | 精品久久久无码中文字幕 | 日本在线高清不卡免费播放 | 无码人妻少妇伦在线电影 | 久久久久久国产精品无码下载 | 国产精品沙发午睡系列 | 性色欲网站人妻丰满中文久久不卡 | 日日天日日夜日日摸 | 久久www免费人成人片 | 特黄特色大片免费播放器图片 | 成人无码精品1区2区3区免费看 | 女人色极品影院 | 日本一本二本三区免费 | 无码人妻少妇伦在线电影 | 国产日产欧产精品精品app | 熟妇人妻无码xxx视频 | 国产香蕉尹人视频在线 | 内射后入在线观看一区 | 97色伦图片97综合影院 | 中文字幕无码视频专区 | 九九热爱视频精品 | 国产精品人人妻人人爽 | 国产综合色产在线精品 | 日本乱偷人妻中文字幕 | 国产女主播喷水视频在线观看 | 欧美人妻一区二区三区 | 国精品人妻无码一区二区三区蜜柚 | 国产超碰人人爽人人做人人添 | 高清无码午夜福利视频 | 影音先锋中文字幕无码 | 国产亚洲美女精品久久久2020 | 77777熟女视频在线观看 а天堂中文在线官网 | 天天躁日日躁狠狠躁免费麻豆 | 成人女人看片免费视频放人 | 亚洲а∨天堂久久精品2021 | 国产乱子伦视频在线播放 | 免费无码一区二区三区蜜桃大 | 日韩亚洲欧美中文高清在线 | 亚洲毛片av日韩av无码 | 少妇的肉体aa片免费 | 精品无码一区二区三区的天堂 | 久久精品中文字幕大胸 | 人人妻人人澡人人爽欧美精品 | 日韩精品a片一区二区三区妖精 | 少妇厨房愉情理9仑片视频 | 成 人影片 免费观看 | 国产女主播喷水视频在线观看 | 色婷婷久久一区二区三区麻豆 | 少女韩国电视剧在线观看完整 | 日本大乳高潮视频在线观看 | 亚洲成av人影院在线观看 | av小次郎收藏 | 国产成人一区二区三区在线观看 | 久久精品女人天堂av免费观看 | 国产精品久久久午夜夜伦鲁鲁 | 欧美xxxx黑人又粗又长 | а天堂中文在线官网 | 正在播放老肥熟妇露脸 | 国产偷国产偷精品高清尤物 | 精品一二三区久久aaa片 | 国产熟妇另类久久久久 | 国产内射老熟女aaaa | 性史性农村dvd毛片 | 欧美黑人巨大xxxxx | 97夜夜澡人人爽人人喊中国片 | 性欧美牲交xxxxx视频 | 免费观看激色视频网站 | 中文字幕无码视频专区 | 综合网日日天干夜夜久久 | 少妇高潮喷潮久久久影院 | 亚洲日韩av一区二区三区中文 | 日本肉体xxxx裸交 | 人妻体内射精一区二区三四 | 在线播放亚洲第一字幕 | 中文亚洲成a人片在线观看 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 伊人久久婷婷五月综合97色 | 天天做天天爱天天爽综合网 | 国产三级精品三级男人的天堂 | 国产成人无码区免费内射一片色欲 | 又粗又大又硬毛片免费看 | 少妇高潮喷潮久久久影院 | 亚洲综合无码久久精品综合 | 久久综合久久自在自线精品自 | 亚洲人成网站色7799 | 欧美乱妇无乱码大黄a片 | 久久伊人色av天堂九九小黄鸭 | 中文字幕av伊人av无码av | 无码人妻出轨黑人中文字幕 | 色综合天天综合狠狠爱 | 国产黑色丝袜在线播放 | 国产亚洲精品久久久久久久 | 亚洲成av人片天堂网无码】 | 中文字幕无线码 | 无码精品人妻一区二区三区av | 久久人人爽人人人人片 | 亚洲精品久久久久中文第一幕 | 无码国产色欲xxxxx视频 | 久久精品成人欧美大片 | 少妇无码av无码专区在线观看 | 秋霞成人午夜鲁丝一区二区三区 | 中文字幕av日韩精品一区二区 | 国精产品一区二区三区 | 精品国产福利一区二区 | 性色欲情网站iwww九文堂 | 丁香啪啪综合成人亚洲 | 大乳丰满人妻中文字幕日本 | 国产午夜福利100集发布 | 精品国产国产综合精品 | 国产亚洲精品久久久久久久 | 午夜丰满少妇性开放视频 | 亚洲综合无码一区二区三区 | 色综合视频一区二区三区 | 极品尤物被啪到呻吟喷水 | 国产成人精品久久亚洲高清不卡 | 一本色道久久综合狠狠躁 | 爱做久久久久久 | 亚洲精品综合五月久久小说 | 亚洲日韩av一区二区三区四区 | 精品偷拍一区二区三区在线看 | 风流少妇按摩来高潮 | 久久精品女人的天堂av | 欧美黑人性暴力猛交喷水 | 亚洲欧美国产精品专区久久 | 老司机亚洲精品影院无码 | 特黄特色大片免费播放器图片 | 乌克兰少妇性做爰 | 欧美兽交xxxx×视频 | 欧美阿v高清资源不卡在线播放 | 爆乳一区二区三区无码 | 成人性做爰aaa片免费看 | 国产香蕉97碰碰久久人人 | а√天堂www在线天堂小说 |