python相比c语言更动态_Python金融大数据分析
第8章 高性能的Python
許多高性能庫可以用于加速Python代碼的執行:
· Cython 用于合并Py由on和C語言靜態編譯范型。
· IPython.parallel 用于在本地或者在群集上并行執行代碼/函數。
· numexpr 用于快速數值運算。
· multiprocessing Python內建的(本地)并行處理模塊。
· Numba 用于為CPU動態編譯Python代碼。
· NumbaPro 用于為多核CPU和GPU動態編譯Python代碼。
定義一個方便的函數,可以系統性地比較在相同或者不同數據集上執行不同函數的性能:
def perf_comp_data(func_list, data_list, rep=3, number=1):
"""
Function to compare the performance of different function.
:param func_list: list with function names as strings
:param data_list: list with data set names as strings
:param rep: number of repetitions of the whole comparison
:param number: number of executions for every function
:return:
"""
from timeit import repeat
res_list = {}
for name in enumerate(func_list):
stmt = name[1] + '(' + data_list[name[0]] + ')'
setup = "from __main__ import " + name[1] + ', ' + data_list[name[0]]
results = repeat(stmt=stmt, setup=setup, repeat=rep, number=number)
res_list[name[1]] = sum(results) / rep
res_sort = sorted(res_list.items(), key=lambda item: item[1])
for item in res_sort:
rel = item[1] / res_sort[0][1]
print('function:' + item[0][1] + ', av.item sec: %9.5f, ' % item[1] + 'relative: %6.1f' % rel)
8.1 Python范型與性能
在金融學中與其他科學及數據密集學科一樣, 大數據集上的數值計算相當費時。舉個例子, 我們想要在包含 50 萬個數值的數組上求取某個復雜數學表達式的值。我們選擇公式中的表達式,它的每次計算都會帶來一定的計算負擔。除此之外,該公式沒有任何特殊的含義。
數學表達式示例
def perf_comp_data(func_list, data_list, rep=3, number=1):
"""
Function to compare the performance of different function.
:param func_list: list with function names as strings
:param data_list: list with data set names as strings
:param rep: number of repetitions of the whole comparison
:param number: number of executions for every function
:return:
"""
from timeit import repeat
res_list = {}
for name in enumerate(func_list):
stmt = name[1] + '(' + data_list[name[0]] + ')'
setup = "from __main__ import " + name[1] + ', ' + data_list[name[0]]
results = repeat(stmt=stmt, setup=setup, repeat=rep, number=number)
res_list[name[1]] = sum(results) / rep
res_sort = sorted(res_list.items(), key=lambda item: item[1])
for item in res_sort:
rel = item[1] / res_sort[0][1]
print('function:' + item[0] + ', av.item sec: %9.5f, ' % item[1] + 'relative: %6.1f' % rel)
# 8.1 Python范型與性能
from math import *
# 很容易轉換為一個Python函數
def f(x):
return abs(cos(x)) ** 0.5 + sin(2 + 3 * x)
# 使用range函數,我們可以高效地生成一個包含 50 萬個數值的列表對象
I = 500000
a_py = range(I)
# 包含顯式循環的標準Python函數
def f1(a):
res = []
for x in a:
res.append(f(x))
return res
# 包含隱含循環的迭代子方法
def f2(a):
return [f(x) for x in a]
# 包含隱含循環、使用eval的選代子方法
def f3(a):
ex = 'abs(cos(x))**0.5+sin(2+3*x)'
return [eval(ex) for x in a]
# Numy向量化實現
import numpy as np
a_np = np.arange(I)
def f4(a):
return (np.abs(np.cos(a)) ** 0.5 + np.sin(2 + 3 * a))
# 專用庫numexpr求數值表達式的值。 這個庫內建了多線程執行支持
# numexpr單線程實現
import numexpr as ne
def f5(a):
ex='abs(cos(a))**0.5+sin(2+3*a)'
ne.set_num_threads(1)
return ne.evaluate(ex)
# nwexpr多線程實現
def f6(a):
ex = 'abs(cos(a))**0.5+sin(2+3*a)'
ne.set_num_threads(16)
return ne.evaluate(ex)
%%time
r1=f1(a_py)
r2=f2(a_py)
r3=f3(a_py)
r4=f4(a_np)
r5=f5(a_np)
r6=f6(a_np)
# Wall time: 35.1 s
# NumPy函數alJclose可以輕松地檢查兩個(類) ndarray對象是否包含相同數據
np.allclose(r1,r2)
# True
np.allclose(r1,r3)
# True
np.allclose(r1,r4)
# True
np.allclose(r1,r5)
# True
np.allclose(r1,r6)
# True
# 使用perf_comp_data函數
func_list=['f1','f2','f3','f4','f5','f6']
data_list=['a_py','a_py','a_py','a_np','a_np','a_np']
perf_comp_data(func_list,data_list)
# function:f6, av.item sec: 0.01623, relative: 1.0
# function:f5, av.item sec: 0.04650, relative: 2.9
# function:f4, av.item sec: 0.07293, relative: 4.5
# function:f2, av.item sec: 1.17137, relative: 72.2
# function:f1, av.item sec: 1.33291, relative: 82.1
# function:f3, av.item sec: 33.47790, relative: 2062.2
8.2 內存布局與性能
import numpy as np
np.zeros((3,3),dtype=np.float64,order='C')
# array([[ 0., 0., 0.],
# [ 0., 0., 0.],
# [ 0., 0., 0.]])
# 元素在內存中存儲的順序:C表示類似C(行優先)
c=np.array([[1.,1.,1.],
[2.,2.,2.],
[3.,3.,3.]],order='C')
# F表示類似Fortran (列優先)
f=np.array([[1.,1.,1.],
[2.,2.,2.],
[3.,3.,3.]],order='F')
x = np.random.standard_normal((3, 1500000))
C = np.array(x, order='C')
F = np.array(x, order='F')
x = 0.0
%timeit C.sum(axis=0) # 10 loops, best of 3: 19.3 ms per loop
%timeit C.sum(axis=1) # 100 loops, best of 3: 10.3 ms per loop
# 第一個軸上計算總和比第二個軸慢了將近一倍
%timeit C.std(axis=0) # 10 loops, best of 3: 112 ms per loop
%timeit C.std(axis=1) # 10 loops, best of 3: 57.6 ms per loop
%timeit F.sum(axis=0) # 10 loops, best of 3: 70.7 ms per loop
%timeit F.sum(axis=1) # 10 loops, best of 3: 84.2 ms per loop
# 兩個軸的相對差值并不太大
%timeit F.std(axis=0) # 1 loop, best of 3: 253 ms per loop
%timeit F.std(axis=1) # 1 loop, best of 3: 227 ms per loop
# 與類似C的布局相比, 類似F這種布局的性能更差
8.3 并行計算
8.3.1 蒙特卡洛算法
期權的蒙特卡洛估值是導致高計算負擔的金融算法之一。作為特例,我們選擇Black-Scholes-Meron設置下的歐式看漲期權價值蒙特卡洛估值函數。在這種設置下,所要估值的期權標的遵循隨機微分方程式(SDE),如下公式。St是時間t的標的價值;r是一個常數——無風險短期利率;σ是恒定瞬時波動率;Z是布朗運動。
Black-Scholes-Metron SDE
歐式看漲期權的蒙特卡洛估算函數
def bsm_mcs_valuation(strike):
"""
Dynamic Black-Scholes-Merton Monte Carlo estimator for European calls.
:param strike:
:return:
"""
import numpy as np
S0=100.;T=1.0;r=0.05;vola=0.2
M=50;I=2000
dt=T/M
rand=np.random.standard_normal((M+1,I))
S=np.zeros((M+1,I));S[0]=S0
for t in range(1,M+1):
S[t]=S[t-1]*np.exp((r-0.5*vola**2)*dt+vola*np.sqrt(dt)*rand[t])
value=(np.exp(-r*T)*np.sum(np.maximum(S[-1]-strike,0))/I)
return value
8.3.2 順序化計算
作為基準用例, 我們對不同行權價的100種期權進行估值。seq_value函數計算蒙特卡洛估算函數。返回包含行權價和估值結果的列表對象:
def seq_value(n):
"""
Sequential option valuation
:param n: number of option valuations/strikes
:return:
"""
strikes=np.linspace(80,120,n)
option_values=[]
for strike in strikes:
option_values.append(bsm_mcs_valuation(strike))
return strikes,option_values
n=100 # number of options to be valued
%time strikes,option_values_seq=seq_value(n)
# Wall time: 1.39 s
import matplotlib.pyplot as plt
plt.figure(figsize=(8,4))
plt.plot(strikes,option_values_seq,'b')
plt.plot(strikes,option_values_seq,'r.')
plt.grid(True)
plt.xlabel('strikes')
plt.ylabel('European call option values')
8.4 多處理
有時候在本地并行執行代碼是很有益的。 這就是 “標準” Pthon 模
塊 multiprocessing 的用武之地:
import numpy as np
import multiprocessing as mp
import math
import matplotlib.pyplot as plt
def simulate_geometric_brownian_motion(p):
M,I=p
# time steps,paths
S0=100;r=0.05;sigma=0.2;T=1.0
# model parameters
dt=T/M
paths=np.zeros((M+1,I))
paths[0]=S0
for t in range(1,M+1):
paths[t]=paths[t-1]*np.exp((r-0.5*sigma**2)*dt+sigma*math.sqrt(dt)*np.random.standard_normal(I))
return paths
paths=simulate_geometric_brownian_motion((5,2))
paths
# array([[ 100. , 100. ],
# [ 98.75585496, 86.36316092],
# [ 109.5045796 , 82.00664539],
# [ 92.85348223, 81.23649105],
# [ 73.79002067, 81.99661207],
# [ 67.4225339 , 89.39928928]])
if __name__ == '__main__':
I=10000 # number of paths
M=100 # number of time steps
t=100 # number of tasks/simulations
# running on server with 8 cores/16 threads
from time import time
times=[]
for w in range(1,17):
t0=time()
pool=mp.Pool(processes=w)
# the pool of workers
result = pool.map(simulate_geometric_brownian_motion,t*[(M,I),])
# the mapping of the function to the list of parameter tuples
times.append(time()-t0)
plt.plot(range(1, 17), times)
plt.plot(range(1, 17), times, 'ro')
plt.grid(True)
plt.xlabel('number of processes')
plt.ylabel('time in seconds')
plt.title('%d Monte Carlo simulations' % t)
性能和可用核心數量成正比。 不過, 超線程在本例中不能帶來太多好處(甚至更糟)
簡易的并行化
金融學中的許多問題可以應用簡單的并行化技術, 例如, 在算法的不同實例之間沒有共享數據時。Python的multiprocesing模塊可以高效地利用現代硬件架構的能力, 一般不需要改變基本算法或者并行執行的Python函數.
8.5 動態編譯
Numba (http://numba.pydata.org)是開源 、 NumPy 感知的優化Python 代碼編譯器。它使用 LLVM 編譯器基礎架構,將Python 字節代碼編譯專門用于 NumPy運行時和SciPy模塊的機器代碼。
8.5.1 介紹性示例
from math import cos,log
def f_py(I,J):
res=0
for i in range(I):
for j in range(J):
res+=int(cos(log(1)))
return res
I,J=5000,5000
%time f_py(I,J)
# Wall time: 30 s
# 25000000
def f_np(I, J):
a = np.ones((I, J), dtype=np.float64)
return int(np.sum(np.cos(np.log(a)))), a
%time res, a = f_np(I, J)
# Wall time: 1.34 s
a.nbytes
# 200000000
import numba as nb
f_nb=nb.jit(f_py)
%time f_nb(I,J)
# Wall time: 741 ms
# 25000000
func_list=['f_py','f_np','f_nb']
data_list=3*['I,J']
perf_comp_data(func_list,data_list)
# function:f_nb, av.item sec: 0.00001, relative: 1.0
# function:f_np, av.item sec: 1.36470, relative: 156714.8
# function:f_py, av.item sec: 29.53817, relative: 3391993.0
速效方法
改善(數值算法)性能的許多方法都需要花費可觀的精力。利用Python和Numba, 就有了需要最少精力的 一種方法一一般來說, 只需要導入境庫和一行附加代碼 . 它不能用于所有類型算法,但是往往值得(簡單地) 一試, 有時候確實能夠快速取得效果。
8.5.2 二項式期權定價方法
前面使用蒙特卡洛模擬方法、 利用并行計算估計歐式看漲期權的價值。估算期權價值的另一種流行數值方法是二項式期權定價模型。 這種模型和Black-Scholes-Meron設置一樣有風險資產(指數或者股票)以及無風險資產(債券)。 和蒙特卡洛方法一樣,從當天到期權到期日的時間間隔被分為通常等距的子間隔Δt, 如果時間s的指數水平為Ss, 則 t = s+Δt 時的指數水平為St = Ss·m , 其中m是從{u, d } 中隨機選取(
)。r是 一個常數一一無風險利率。 風險中立的上漲概率為
。
對該模型進行參數化:
# model & option parameters
S0=100. # initial index level
T=1. # call option maturity
r=0.05 # constant short rate
vola=0.20 # constant volatility factor of diffusion
# time parameters
M=1000 #time steps
dt=T/M # length of time interval
df= exp(-r*dt) # discount factor per time interval
# binomial parameters
u=exp(vola*sqrt(dt)) # up-movement
d=1/u # down-movement
q=(exp(r*dt)-d)/(u-d) # martingale probability
歐式期權二項式算法的實現主要包含如下部分:
指數水平模擬
連步模擬指數水平。
內在價值計算
計算到期日和每個時間步的內在價值。
風險中性折算
逐步折算(預期)內在價值直到達到現值。
在Python中,這可能采取函數binomial_py中的形式。該面數使用NumPy ndarray對象作為基本數據結構, 并實現3個不同的嵌套循環,以實現上述的3個步驟:
from math import *
# model & option parameters
S0=100. # initial index level
T=1. # call option maturity
r=0.05 # constant short rate
vola=0.20 # constant volatility factor of diffusion
# time parameters
M=1000 #time steps
dt=T/M # length of time interval
df= exp(-r*dt) # discount factor per time interval
# binomial parameters
u=exp(vola*sqrt(dt)) # up-movement
d=1/u # down-movement
q=(exp(r*dt)-d)/(u-d) # martingale probability
import numpy as np
def binomial_py(strike):
"""
Binomial option pricing via looping
:param strike:float
strike price of the European call option
:return:
"""
# LOOP 1 - Index Levels
S=np.zeros((M+1,M+1),dtype=np.float64)
# index level array
S[0,0]=S0
z1=0
for j in range(1,M+1,1):
z1=z1+1
for i in range(z1+1):
S[i,j]=S[0,0]*(u**j)*(d**(i*2))
# LOOP 2 - Inner Values
iv = np.zeros((M+1,M+1),dtype=np.float64)
# inner value array
z2=0
for j in range(0,M+1,1):
for i in range(z2+1):
iv[i,j]=max(S[i,j]-strike,0)
z2=z2+1
# LOOP 3 - Valuation
pv = np.zeros((M+1,M+1),dtype=np.float64)
# present value array
pv[:,M]=iv[:,M] # initialize last time point
z3=M+1
for j in range(M-1,-1,-1):
z3=z3-1
for i in range(z3):
pv[i,j]=(q*pv[i,j+1]+(1-q)*pv[i+1,j+1])*df
return pv[0,0]
上函數使用前面指定的參數. 返回歐式看漲期權的現值:
%time round(binomial_py(100),3)
# Wall time: 4.23 s
# 10.449
將這個結果與蒙特卡洛函數bsm_mcs_valuation返回的估算結果比較
%time round(bsm_mcs_valuation(100),3)
# Wall time: 15 ms
# 10.183
兩個值很類似,它們只是“相似” 而不是相同。是因為蒙特卡洛估值和bsm_mcs_valuaton所實現的算法都不是很精確, 不同的隨機數會導致(稍有)不同的估算結果, 對于健全的蒙特卡洛估算來說, 每次模擬使用2000Q條路徑也可能略少一些(但是可以得到較高的估值速度)。 相比之下, 本例中的二項式期權估價使用 1000 個時間步已經相當精確,但是花費的時間也長得多。
可以嘗試 NumPy 向量化技術,從二項式方法中得到同樣精確、但是速度更快的結果。 binomial_np 函數初看有些神秘,但是, 當運行單獨的構建步驟并檢查結果, 后臺( NumPy )發生的操作就顯而易見了:
def binomial_np(strike):
"""
Binomial option pricing with NumPy
:param strike: float
strike price of the European call option
:return:
"""
# Index Levels with NumPy
mu=np.array(M+1)
mu=np.resize(mu,(M+1,M+1))
md=np.transpose(mu)
mu=u**(mu-md)
S=S0*mu*md
# Valuation Loop
pv=np.maximum(S-strike,0)
z=0
for t in range(M-1,-1,-1): # backward iteration
pv[0:M-z,t]=(q*pv[0:M-z,t+1]+(1-q)*pv[1:M-z+1,t+1])*df
z+=1
return pv[0,0]
下面我們簡單地看看后臺的情況。 為了簡潔和易于理解, 只考慮 M = 4 的時間步。第一步如下:
# 第一步
M = 4 # four time steps only
mu = np.arange(M + 1)
mu
# array([0, 1, 2, 3, 4])
# 第二步
mu = np.resize(mu, (M + 1, M + 1))
mu
# array([[0, 1, 2, 3, 4],
# [0, 1, 2, 3, 4],
# [0, 1, 2, 3, 4],
# [0, 1, 2, 3, 4],
# [0, 1, 2, 3, 4]])
# 第三步
md = np.transpose(mu)
md
# array([[0, 0, 0, 0, 0],
# [1, 1, 1, 1, 1],
# [2, 2, 2, 2, 2],
# [3, 3, 3, 3, 3],
# [4, 4, 4, 4, 4]])
# 第四步
mu = u ** (mu - md)
mu.round(3)
# array([[ 1. , 1.006, 1.013, 1.019, 1.026],
# [ 0.994, 1. , 1.006, 1.013, 1.019],
# [ 0.987, 0.994, 1. , 1.006, 1.013],
# [ 0.981, 0.987, 0.994, 1. , 1.006],
# [ 0.975, 0.981, 0.987, 0.994, 1. ]])
# 第五步
md = d ** md
md.round(3)
# array([[ 1. , 1. , 1. , 1. , 1. ],
# [ 0.994, 0.994, 0.994, 0.994, 0.994],
# [ 0.987, 0.987, 0.987, 0.987, 0.987],
# [ 0.981, 0.981, 0.981, 0.981, 0.981],
# [ 0.975, 0.975, 0.975, 0.975, 0.975]])
# 最后將所有步驟聚合起來
S = S0 * mu * md
S.round(3)
# array([[ 100. , 100.634, 101.273, 101.915, 102.562],
# [ 98.743, 99.37 , 100. , 100.634, 101.273],
# [ 97.502, 98.121, 98.743, 99.37 , 100. ],
# [ 96.276, 96.887, 97.502, 98.121, 98.743],
# [ 95.066, 95.669, 96.276, 96.887, 97.502]])
在ndarray對象S中,只有上三角矩陣是重要的。雖然這種方法進行的計算多于原則上的需要,但是這種方法和預計的一樣,比嚴重依賴Python級別嵌套循環的第一個版本快得多:
M=1000 # reset number of time steps
%time round(binomial_np(100),3)
# Wall time: 1.03 s
# 0.0 這個結果不太對
Numba在金融算法中也是很重要
binomial_nb=nb.jit(binomial_py)
%time round(binomial_nb(100),3)
# Wall time: 1.58 s
# 10.449
我們還沒有看出對NumPy向盤化版本有多少加速效果,因為第一次調用編譯后的函數涉及一些開銷。因此,使用 prf_comp_func函數應該更現實地揭示出不同實現的性能對比。顯然,Numba編譯版本確實明顯快于NumPy版本:
func_list=['binomial_py','binomial_np','binomial_nb']
K=100
data_list=3*['K']
perf_comp_data(func_list,data_list)
# function:binomial_nb, av.item sec: 0.12641, relative: 1.0
# function:binomial_np, av.item sec: 0.96281, relative: 7.6
# function:binomial_py, av.item sec: 4.26450, relative: 33.7
我們可以得出如下結論:
效率:使用Nnmba只需要花費很少的額外精力。原始函數往往完全不需要改變;你所需要做的就是調用jlt函數。
加速:Numba往往帶來執行速度的顯著提高.不僅和純Py曲。n相比是如此.即使對向量化的NumPy實現也有明顯優勢。
內存:使用Numba不需要初始化大型數組對象;編譯器專門為手上的問題生成機器代碼(和Numpy的 “通用 ” 函數相比)并維持和純Python相同的內存效率。
8.6 用Cython進行靜態編譯
Numba的優勢是對任意函數應用該方法毫不費力。但是,Numba只能為某些問題 “毫不費力 ” 地產生顯著的性能改善。另一種方法更為靈活,但是也需要更多精力,這就是通過Cython的靜態編譯, Cython是Python和C語言的混血兒。從Python的角度看,需要注意的主要不同是靜態類型聲明(和 C語言相同)和一個單獨的編譯步驟(和任何編譯語言相同)。
# 正常的Python代碼:
def f_py(I, J):
res = 0. # we work on a float object
for i in range(I):
for j in range(J * I):
res += 1
return res
I,J=500,500
%time f_py(I,J)
# Wall time: 9 s
# Out[4]: 125000000.0
使用Cython靜態類型聲明的嵌套循環
創建一個名為nested_loop.pyx的文件
# Nested loop example with Cython
# nested_loop.pyx
def f_cy(int I,int J):
cdef double res = 0
# double float nuch slower than in or long
for i in range(I):
for j in range(J*I):
res+=1
return res
在這個簡單的例子中不需要任何特殊的C模塊 ,導人模塊有一種簡單的方法一一就是通過pyximport
import pyximport
pyximport.install()
# 直接從Cython模塊中導人
import sys
sys.path.append('E:\python_for_finance\chapter08')
# path to the Cython script
# not needed if in same directory
from nested_loop import f_cy
# 如果報錯: Unable to find vcvarsall.bat
# 是因為找不到vcvarsall.bat,這個問題件是在VS目錄下的,
# 我的VS2015的目錄是 E:\Program Files (x86)\Microsoft Visual Studio 14.0
# 但是里面沒有這個文件。這時可以在VS中添加一個C++項目,VS會提醒安裝新的軟件包,繼續安裝就可以了
# 安裝好后就可以搜到vcvarsall.bat了
# 然后添加環境變量
# VS90COMNTOOLS : E:\Program Files (x86)\Microsoft Visual Studio 14.0\VC
I, J = 500, 500
%time res = f_cy(I, J)
# Wall time: 131 ms
res
# 125000000.0
在IPython Notebook中工作時,使用Cython有一個更便利的方法:
%load_ext Cython
%%cython
def f_cy(int I,int J):
cdef double res = 0
# double float nuch slower than in or long
for i in range(I):
for j in range(J*I):
res+=1
return res
I, J = 500, 500
%time res = f_cy(I, J)
# Wall time: 131 ms 性能結果相同
res
# 125000000.0
看看Numba在這種情況下能起什么作用
import numba as nb
f_nb=nb.jit(f_py)
%time res=f_nb(I,J)
# Wall time: 947 ms
# 第一次調用函數時, 性能比 Cython 版本差(第一次調用 Numba 編譯函數總是有某些開銷)
%time res=f_nb(I,J)
# Wall time: 131 ms 再次調用,性能就相同了
8.7 在GPU上生成隨機數
最后 一個主題是使用設備進行大規模的并行操作——也就是通用圖形處理單元(GPGPU 或者簡稱 GPU )。 要使用 Nvidia GPU , 就必須安裝 CUDA (統一計算設備架構, https://developer.nvidia..com )。利用 Nvidia GPU 的簡單方法之一是使用 NumbaPro,這個由 Contnuum Analytics 開發的高性能庫為 GPU(或者多核 CPU )動態編譯 Python。
有一個金融領域可以從 GPU 的使用中得到很大的好處:蒙特卡洛模擬。 特別是(偽)隨機數生成。
總結
以上是生活随笔為你收集整理的python相比c语言更动态_Python金融大数据分析的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: allure 测试报告本地打开_Allu
- 下一篇: python升维方法_python机器学