limitof(sin3x)/(5x^3-4x)asxapproaches0
生活随笔
收集整理的這篇文章主要介紹了
limitof(sin3x)/(5x^3-4x)asxapproaches0
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
We can use the fact that sin(x) is approximately equal to x when x is very small, and use L'H?pital's rule to evaluate the limit:
lim x → 0 sin(3x)/(5x^3 - 4x)
= lim x → 0 (3x)/(5x^3 - 4x) (using sin(3x) ≈ 3x when x is small)
= lim x → 0 3/(15x^2 - 4)
= 3/(-4) (using L'H?pital's rule)
= -3/4
Therefore, the limit of sin(3x)/(5x^3 - 4x) as x approaches 0 is -3/4.
總結
以上是生活随笔為你收集整理的limitof(sin3x)/(5x^3-4x)asxapproaches0的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 不一样的STAR法则
- 下一篇: C语言复习之关键字static的作用