Python深度学习之分类模型示例,MNIST数据集手写数字识别
生活随笔
收集整理的這篇文章主要介紹了
Python深度学习之分类模型示例,MNIST数据集手写数字识别
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
MNIST數據集是機器學習領域中非常經典的一個數據集,由60000個訓練樣本和10000個測試樣本組成,每個樣本都是一張28 * 28像素的灰度手寫數字圖片。
我們把60000個訓練樣本分成兩部分,前5000個為驗證樣本,后55000為訓練樣本。代碼基本與Tensorflow官方一致,完整代碼如下:(TensorFlow版本: 1.14.0,其它版本或許有差異)
#!/usr/bin/env python import os import tensorflow as tfos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' tf.compat.v1.enable_eager_execution()print("TensorFlow Version:\t", tf.__version__)mnist = tf.keras.datasets.mnist(x_train_all, y_train_all), (x_test, y_test) = mnist.load_data() x_train_all, x_test = x_train_all / 255.0, x_test / 255.0x_valid, x_train = x_train_all[:5000], x_train_all[5000:] y_valid, y_train = y_train_all[:5000], y_train_all[5000:]model = tf.keras.models.Sequential() model.add(tf.keras.layers.Flatten(input_shape=(28, 28))) model.add(tf.keras.layers.Dense(128, activation='relu')) model.add(tf.keras.layers.Dropout(0.2)) model.add(tf.keras.layers.Dense(10, activation='softmax'))model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'],)model.fit(x_train, y_train, epochs=5, validation_data=(x_valid, y_valid)) model.evaluate(x_test, y_test)輸出結果如下:
"C:\Program Files\Python\Python37\python.exe" "D:/Pycharm Projects/MLDemo/MLDemo.py" TensorFlow Version: 1.14.0 Train on 55000 samples, validate on 5000 samples Epoch 1/532/55000 [..............................] - ETA: 2:58 - loss: 2.4444 - acc: 0.12501056/55000 [..............................] - ETA: 7s - loss: 1.6515 - acc: 0.4848 2080/55000 [>.............................] - ETA: 5s - loss: 1.2406 - acc: 0.61923104/55000 [>.............................] - ETA: 4s - loss: 1.0329 - acc: 0.68114192/55000 [=>............................] - ETA: 3s - loss: 0.9097 - acc: 0.72405216/55000 [=>............................] - ETA: 3s - loss: 0.8194 - acc: 0.75106240/55000 [==>...........................] - ETA: 3s - loss: 0.7554 - acc: 0.77087168/55000 [==>...........................] - ETA: 3s - loss: 0.7100 - acc: 0.78468288/55000 [===>..........................] - ETA: 2s - loss: 0.6664 - acc: 0.79869376/55000 [====>.........................] - ETA: 2s - loss: 0.6278 - acc: 0.8104 10528/55000 [====>.........................] - ETA: 2s - loss: 0.6004 - acc: 0.8181 11584/55000 [=====>........................] - ETA: 2s - loss: 0.5733 - acc: 0.8266 12672/55000 [=====>........................] - ETA: 2s - loss: 0.5568 - acc: 0.8320 13792/55000 [======>.......................] - ETA: 2s - loss: 0.5393 - acc: 0.8381 14912/55000 [=======>......................] - ETA: 2s - loss: 0.5257 - acc: 0.8425 15904/55000 [=======>......................] - ETA: 2s - loss: 0.5144 - acc: 0.8462 16928/55000 [========>.....................] - ETA: 2s - loss: 0.5006 - acc: 0.8506 18048/55000 [========>.....................] - ETA: 1s - loss: 0.4886 - acc: 0.8543 19200/55000 [=========>....................] - ETA: 1s - loss: 0.4773 - acc: 0.8573 20256/55000 [==========>...................] - ETA: 1s - loss: 0.4660 - acc: 0.8609 21344/55000 [==========>...................] - ETA: 1s - loss: 0.4550 - acc: 0.8639 22464/55000 [===========>..................] - ETA: 1s - loss: 0.4442 - acc: 0.8674 23584/55000 [===========>..................] - ETA: 1s - loss: 0.4363 - acc: 0.8698 24608/55000 [============>.................] - ETA: 1s - loss: 0.4298 - acc: 0.8717 25696/55000 [=============>................] - ETA: 1s - loss: 0.4223 - acc: 0.8742 26816/55000 [=============>................] - ETA: 1s - loss: 0.4147 - acc: 0.8764 27968/55000 [==============>...............] - ETA: 1s - loss: 0.4070 - acc: 0.8784 29120/55000 [==============>...............] - ETA: 1s - loss: 0.4006 - acc: 0.8805 30240/55000 [===============>..............] - ETA: 1s - loss: 0.3949 - acc: 0.8824 31360/55000 [================>.............] - ETA: 1s - loss: 0.3903 - acc: 0.8838 32512/55000 [================>.............] - ETA: 1s - loss: 0.3842 - acc: 0.8858 33696/55000 [=================>............] - ETA: 1s - loss: 0.3797 - acc: 0.8872 34720/55000 [=================>............] - ETA: 1s - loss: 0.3743 - acc: 0.8886 35776/55000 [==================>...........] - ETA: 0s - loss: 0.3699 - acc: 0.8900 36864/55000 [===================>..........] - ETA: 0s - loss: 0.3651 - acc: 0.8914 38016/55000 [===================>..........] - ETA: 0s - loss: 0.3604 - acc: 0.8928 39136/55000 [====================>.........] - ETA: 0s - loss: 0.3563 - acc: 0.8940 40192/55000 [====================>.........] - ETA: 0s - loss: 0.3526 - acc: 0.8951 41248/55000 [=====================>........] - ETA: 0s - loss: 0.3492 - acc: 0.8962 42400/55000 [======================>.......] - ETA: 0s - loss: 0.3460 - acc: 0.8973 43488/55000 [======================>.......] - ETA: 0s - loss: 0.3423 - acc: 0.8984 44512/55000 [=======================>......] - ETA: 0s - loss: 0.3395 - acc: 0.8993 45440/55000 [=======================>......] - ETA: 0s - loss: 0.3365 - acc: 0.9002 46528/55000 [========================>.....] - ETA: 0s - loss: 0.3335 - acc: 0.9008 47648/55000 [========================>.....] - ETA: 0s - loss: 0.3307 - acc: 0.9017 48736/55000 [=========================>....] - ETA: 0s - loss: 0.3278 - acc: 0.9027 49856/55000 [==========================>...] - ETA: 0s - loss: 0.3252 - acc: 0.9035 50944/55000 [==========================>...] - ETA: 0s - loss: 0.3221 - acc: 0.9045 51968/55000 [===========================>..] - ETA: 0s - loss: 0.3199 - acc: 0.9051 53088/55000 [===========================>..] - ETA: 0s - loss: 0.3176 - acc: 0.9059 54112/55000 [============================>.] - ETA: 0s - loss: 0.3152 - acc: 0.9066 55000/55000 [==============================] - 3s 55us/sample - loss: 0.3129 - acc: 0.9072 - val_loss: 0.1477 - val_acc: 0.9608 Epoch 2/532/55000 [..............................] - ETA: 8s - loss: 0.3416 - acc: 0.87501088/55000 [..............................] - ETA: 2s - loss: 0.2193 - acc: 0.93662144/55000 [>.............................] - ETA: 2s - loss: 0.1951 - acc: 0.94593200/55000 [>.............................] - ETA: 2s - loss: 0.1856 - acc: 0.94914320/55000 [=>............................] - ETA: 2s - loss: 0.1806 - acc: 0.94885376/55000 [=>............................] - ETA: 2s - loss: 0.1830 - acc: 0.94886432/55000 [==>...........................] - ETA: 2s - loss: 0.1749 - acc: 0.94967584/55000 [===>..........................] - ETA: 2s - loss: 0.1707 - acc: 0.94998736/55000 [===>..........................] - ETA: 2s - loss: 0.1692 - acc: 0.94979792/55000 [====>.........................] - ETA: 2s - loss: 0.1684 - acc: 0.9504 10944/55000 [====>.........................] - ETA: 2s - loss: 0.1671 - acc: 0.9501 12096/55000 [=====>........................] - ETA: 2s - loss: 0.1670 - acc: 0.9506 13248/55000 [======>.......................] - ETA: 1s - loss: 0.1670 - acc: 0.9505 14432/55000 [======>.......................] - ETA: 1s - loss: 0.1661 - acc: 0.9504 15552/55000 [=======>......................] - ETA: 1s - loss: 0.1682 - acc: 0.9500 16672/55000 [========>.....................] - ETA: 1s - loss: 0.1671 - acc: 0.9507 17760/55000 [========>.....................] - ETA: 1s - loss: 0.1675 - acc: 0.9505 18912/55000 [=========>....................] - ETA: 1s - loss: 0.1660 - acc: 0.9510 19968/55000 [=========>....................] - ETA: 1s - loss: 0.1662 - acc: 0.9510 21120/55000 [==========>...................] - ETA: 1s - loss: 0.1653 - acc: 0.9510 22272/55000 [===========>..................] - ETA: 1s - loss: 0.1640 - acc: 0.9517 23424/55000 [===========>..................] - ETA: 1s - loss: 0.1633 - acc: 0.9523 24544/55000 [============>.................] - ETA: 1s - loss: 0.1625 - acc: 0.9527 25664/55000 [============>.................] - ETA: 1s - loss: 0.1620 - acc: 0.9530 26688/55000 [=============>................] - ETA: 1s - loss: 0.1619 - acc: 0.9530 27840/55000 [==============>...............] - ETA: 1s - loss: 0.1611 - acc: 0.9531 28960/55000 [==============>...............] - ETA: 1s - loss: 0.1620 - acc: 0.9529 30080/55000 [===============>..............] - ETA: 1s - loss: 0.1619 - acc: 0.9527 31232/55000 [================>.............] - ETA: 1s - loss: 0.1610 - acc: 0.9529 32384/55000 [================>.............] - ETA: 1s - loss: 0.1605 - acc: 0.9528 33472/55000 [=================>............] - ETA: 0s - loss: 0.1595 - acc: 0.9532 34592/55000 [=================>............] - ETA: 0s - loss: 0.1589 - acc: 0.9533 35744/55000 [==================>...........] - ETA: 0s - loss: 0.1588 - acc: 0.9534 36896/55000 [===================>..........] - ETA: 0s - loss: 0.1587 - acc: 0.9534 38016/55000 [===================>..........] - ETA: 0s - loss: 0.1575 - acc: 0.9537 39104/55000 [====================>.........] - ETA: 0s - loss: 0.1566 - acc: 0.9539 40256/55000 [====================>.........] - ETA: 0s - loss: 0.1561 - acc: 0.9541 41376/55000 [=====================>........] - ETA: 0s - loss: 0.1562 - acc: 0.9541 42496/55000 [======================>.......] - ETA: 0s - loss: 0.1555 - acc: 0.9542 43648/55000 [======================>.......] - ETA: 0s - loss: 0.1545 - acc: 0.9543 44800/55000 [=======================>......] - ETA: 0s - loss: 0.1539 - acc: 0.9543 45952/55000 [========================>.....] - ETA: 0s - loss: 0.1537 - acc: 0.9544 47072/55000 [========================>.....] - ETA: 0s - loss: 0.1532 - acc: 0.9545 48192/55000 [=========================>....] - ETA: 0s - loss: 0.1526 - acc: 0.9548 49184/55000 [=========================>....] - ETA: 0s - loss: 0.1528 - acc: 0.9548 50336/55000 [==========================>...] - ETA: 0s - loss: 0.1522 - acc: 0.9550 51424/55000 [===========================>..] - ETA: 0s - loss: 0.1521 - acc: 0.9551 52544/55000 [===========================>..] - ETA: 0s - loss: 0.1521 - acc: 0.9549 53696/55000 [============================>.] - ETA: 0s - loss: 0.1516 - acc: 0.9550 54848/55000 [============================>.] - ETA: 0s - loss: 0.1510 - acc: 0.9551 55000/55000 [==============================] - 3s 48us/sample - loss: 0.1512 - acc: 0.9551 - val_loss: 0.1084 - val_acc: 0.9680 Epoch 3/532/55000 [..............................] - ETA: 6s - loss: 0.0403 - acc: 1.00001184/55000 [..............................] - ETA: 2s - loss: 0.1262 - acc: 0.96542304/55000 [>.............................] - ETA: 2s - loss: 0.1259 - acc: 0.96613392/55000 [>.............................] - ETA: 2s - loss: 0.1216 - acc: 0.96524544/55000 [=>............................] - ETA: 2s - loss: 0.1202 - acc: 0.96505696/55000 [==>...........................] - ETA: 2s - loss: 0.1192 - acc: 0.96316880/55000 [==>...........................] - ETA: 2s - loss: 0.1125 - acc: 0.96588000/55000 [===>..........................] - ETA: 2s - loss: 0.1099 - acc: 0.96659152/55000 [===>..........................] - ETA: 2s - loss: 0.1088 - acc: 0.9667 10304/55000 [====>.........................] - ETA: 2s - loss: 0.1080 - acc: 0.9664 11488/55000 [=====>........................] - ETA: 1s - loss: 0.1066 - acc: 0.9672 12576/55000 [=====>........................] - ETA: 1s - loss: 0.1069 - acc: 0.9676 13696/55000 [======>.......................] - ETA: 1s - loss: 0.1061 - acc: 0.9678 14848/55000 [=======>......................] - ETA: 1s - loss: 0.1069 - acc: 0.9670 16000/55000 [=======>......................] - ETA: 1s - loss: 0.1075 - acc: 0.9668 17120/55000 [========>.....................] - ETA: 1s - loss: 0.1084 - acc: 0.9661 18240/55000 [========>.....................] - ETA: 1s - loss: 0.1079 - acc: 0.9663 19392/55000 [=========>....................] - ETA: 1s - loss: 0.1081 - acc: 0.9663 20544/55000 [==========>...................] - ETA: 1s - loss: 0.1076 - acc: 0.9667 21696/55000 [==========>...................] - ETA: 1s - loss: 0.1069 - acc: 0.9669 22816/55000 [===========>..................] - ETA: 1s - loss: 0.1070 - acc: 0.9669 24000/55000 [============>.................] - ETA: 1s - loss: 0.1079 - acc: 0.9667 25152/55000 [============>.................] - ETA: 1s - loss: 0.1079 - acc: 0.9671 26272/55000 [=============>................] - ETA: 1s - loss: 0.1083 - acc: 0.9670 27392/55000 [=============>................] - ETA: 1s - loss: 0.1093 - acc: 0.9667 28576/55000 [==============>...............] - ETA: 1s - loss: 0.1100 - acc: 0.9667 29760/55000 [===============>..............] - ETA: 1s - loss: 0.1096 - acc: 0.9668 30880/55000 [===============>..............] - ETA: 1s - loss: 0.1096 - acc: 0.9669 32000/55000 [================>.............] - ETA: 1s - loss: 0.1102 - acc: 0.9667 33120/55000 [=================>............] - ETA: 0s - loss: 0.1100 - acc: 0.9668 34240/55000 [=================>............] - ETA: 0s - loss: 0.1101 - acc: 0.9669 35200/55000 [==================>...........] - ETA: 0s - loss: 0.1100 - acc: 0.9668 36352/55000 [==================>...........] - ETA: 0s - loss: 0.1103 - acc: 0.9667 37472/55000 [===================>..........] - ETA: 0s - loss: 0.1104 - acc: 0.9666 38624/55000 [====================>.........] - ETA: 0s - loss: 0.1104 - acc: 0.9668 39776/55000 [====================>.........] - ETA: 0s - loss: 0.1105 - acc: 0.9668 40896/55000 [=====================>........] - ETA: 0s - loss: 0.1108 - acc: 0.9668 42016/55000 [=====================>........] - ETA: 0s - loss: 0.1106 - acc: 0.9670 43168/55000 [======================>.......] - ETA: 0s - loss: 0.1098 - acc: 0.9672 44320/55000 [=======================>......] - ETA: 0s - loss: 0.1104 - acc: 0.9671 45440/55000 [=======================>......] - ETA: 0s - loss: 0.1109 - acc: 0.9669 46496/55000 [========================>.....] - ETA: 0s - loss: 0.1109 - acc: 0.9669 47648/55000 [========================>.....] - ETA: 0s - loss: 0.1109 - acc: 0.9668 48800/55000 [=========================>....] - ETA: 0s - loss: 0.1109 - acc: 0.9668 49920/55000 [==========================>...] - ETA: 0s - loss: 0.1107 - acc: 0.9669 51040/55000 [==========================>...] - ETA: 0s - loss: 0.1111 - acc: 0.9667 52192/55000 [===========================>..] - ETA: 0s - loss: 0.1116 - acc: 0.9665 53344/55000 [============================>.] - ETA: 0s - loss: 0.1115 - acc: 0.9665 54464/55000 [============================>.] - ETA: 0s - loss: 0.1119 - acc: 0.9665 55000/55000 [==============================] - 3s 47us/sample - loss: 0.1119 - acc: 0.9664 - val_loss: 0.0966 - val_acc: 0.9714 Epoch 4/532/55000 [..............................] - ETA: 5s - loss: 0.0525 - acc: 0.96881184/55000 [..............................] - ETA: 2s - loss: 0.1083 - acc: 0.96452240/55000 [>.............................] - ETA: 2s - loss: 0.0960 - acc: 0.96923360/55000 [>.............................] - ETA: 2s - loss: 0.1016 - acc: 0.96854512/55000 [=>............................] - ETA: 2s - loss: 0.1044 - acc: 0.96945632/55000 [==>...........................] - ETA: 2s - loss: 0.0989 - acc: 0.97146720/55000 [==>...........................] - ETA: 2s - loss: 0.0991 - acc: 0.97077840/55000 [===>..........................] - ETA: 2s - loss: 0.1021 - acc: 0.96948992/55000 [===>..........................] - ETA: 2s - loss: 0.1013 - acc: 0.9694 10144/55000 [====>.........................] - ETA: 2s - loss: 0.1003 - acc: 0.9688 11168/55000 [=====>........................] - ETA: 2s - loss: 0.1003 - acc: 0.9680 12288/55000 [=====>........................] - ETA: 1s - loss: 0.0979 - acc: 0.9690 13408/55000 [======>.......................] - ETA: 1s - loss: 0.0965 - acc: 0.9699 14592/55000 [======>.......................] - ETA: 1s - loss: 0.0944 - acc: 0.9706 15744/55000 [=======>......................] - ETA: 1s - loss: 0.0940 - acc: 0.9708 16864/55000 [========>.....................] - ETA: 1s - loss: 0.0930 - acc: 0.9709 17984/55000 [========>.....................] - ETA: 1s - loss: 0.0929 - acc: 0.9710 19136/55000 [=========>....................] - ETA: 1s - loss: 0.0930 - acc: 0.9712 20288/55000 [==========>...................] - ETA: 1s - loss: 0.0928 - acc: 0.9713 21376/55000 [==========>...................] - ETA: 1s - loss: 0.0935 - acc: 0.9710 22464/55000 [===========>..................] - ETA: 1s - loss: 0.0929 - acc: 0.9712 23520/55000 [===========>..................] - ETA: 1s - loss: 0.0948 - acc: 0.9708 24576/55000 [============>.................] - ETA: 1s - loss: 0.0941 - acc: 0.9709 25632/55000 [============>.................] - ETA: 1s - loss: 0.0930 - acc: 0.9712 26784/55000 [=============>................] - ETA: 1s - loss: 0.0927 - acc: 0.9712 27904/55000 [==============>...............] - ETA: 1s - loss: 0.0923 - acc: 0.9713 29056/55000 [==============>...............] - ETA: 1s - loss: 0.0935 - acc: 0.9711 30144/55000 [===============>..............] - ETA: 1s - loss: 0.0946 - acc: 0.9706 31232/55000 [================>.............] - ETA: 1s - loss: 0.0946 - acc: 0.9703 32352/55000 [================>.............] - ETA: 1s - loss: 0.0950 - acc: 0.9703 33504/55000 [=================>............] - ETA: 0s - loss: 0.0949 - acc: 0.9703 34624/55000 [=================>............] - ETA: 0s - loss: 0.0948 - acc: 0.9704 35744/55000 [==================>...........] - ETA: 0s - loss: 0.0941 - acc: 0.9705 36896/55000 [===================>..........] - ETA: 0s - loss: 0.0934 - acc: 0.9707 38016/55000 [===================>..........] - ETA: 0s - loss: 0.0930 - acc: 0.9710 39136/55000 [====================>.........] - ETA: 0s - loss: 0.0932 - acc: 0.9708 40256/55000 [====================>.........] - ETA: 0s - loss: 0.0932 - acc: 0.9710 41408/55000 [=====================>........] - ETA: 0s - loss: 0.0929 - acc: 0.9711 42560/55000 [======================>.......] - ETA: 0s - loss: 0.0927 - acc: 0.9712 43552/55000 [======================>.......] - ETA: 0s - loss: 0.0926 - acc: 0.9712 44672/55000 [=======================>......] - ETA: 0s - loss: 0.0930 - acc: 0.9711 45824/55000 [=======================>......] - ETA: 0s - loss: 0.0930 - acc: 0.9712 46944/55000 [========================>.....] - ETA: 0s - loss: 0.0928 - acc: 0.9712 48096/55000 [=========================>....] - ETA: 0s - loss: 0.0926 - acc: 0.9712 49216/55000 [=========================>....] - ETA: 0s - loss: 0.0923 - acc: 0.9714 50336/55000 [==========================>...] - ETA: 0s - loss: 0.0927 - acc: 0.9712 51392/55000 [===========================>..] - ETA: 0s - loss: 0.0925 - acc: 0.9712 52448/55000 [===========================>..] - ETA: 0s - loss: 0.0927 - acc: 0.9711 53536/55000 [============================>.] - ETA: 0s - loss: 0.0925 - acc: 0.9713 54688/55000 [============================>.] - ETA: 0s - loss: 0.0924 - acc: 0.9714 55000/55000 [==============================] - 3s 48us/sample - loss: 0.0924 - acc: 0.9714 - val_loss: 0.0799 - val_acc: 0.9770 Epoch 5/532/55000 [..............................] - ETA: 5s - loss: 0.1389 - acc: 0.93751088/55000 [..............................] - ETA: 2s - loss: 0.0770 - acc: 0.97152144/55000 [>.............................] - ETA: 2s - loss: 0.0785 - acc: 0.97483200/55000 [>.............................] - ETA: 2s - loss: 0.0706 - acc: 0.97754256/55000 [=>............................] - ETA: 2s - loss: 0.0716 - acc: 0.97775248/55000 [=>............................] - ETA: 2s - loss: 0.0713 - acc: 0.97776240/55000 [==>...........................] - ETA: 2s - loss: 0.0735 - acc: 0.97717296/55000 [==>...........................] - ETA: 2s - loss: 0.0732 - acc: 0.97758352/55000 [===>..........................] - ETA: 2s - loss: 0.0762 - acc: 0.97699408/55000 [====>.........................] - ETA: 2s - loss: 0.0772 - acc: 0.9760 10464/55000 [====>.........................] - ETA: 2s - loss: 0.0758 - acc: 0.9762 11552/55000 [=====>........................] - ETA: 2s - loss: 0.0755 - acc: 0.9759 12608/55000 [=====>........................] - ETA: 2s - loss: 0.0786 - acc: 0.9752 13664/55000 [======>.......................] - ETA: 2s - loss: 0.0776 - acc: 0.9755 14816/55000 [=======>......................] - ETA: 1s - loss: 0.0764 - acc: 0.9758 16000/55000 [=======>......................] - ETA: 1s - loss: 0.0765 - acc: 0.9756 17152/55000 [========>.....................] - ETA: 1s - loss: 0.0769 - acc: 0.9754 18240/55000 [========>.....................] - ETA: 1s - loss: 0.0776 - acc: 0.9753 19392/55000 [=========>....................] - ETA: 1s - loss: 0.0776 - acc: 0.9754 20576/55000 [==========>...................] - ETA: 1s - loss: 0.0779 - acc: 0.9753 21728/55000 [==========>...................] - ETA: 1s - loss: 0.0770 - acc: 0.9754 22784/55000 [===========>..................] - ETA: 1s - loss: 0.0773 - acc: 0.9754 23872/55000 [============>.................] - ETA: 1s - loss: 0.0773 - acc: 0.9755 24992/55000 [============>.................] - ETA: 1s - loss: 0.0775 - acc: 0.9755 26080/55000 [=============>................] - ETA: 1s - loss: 0.0773 - acc: 0.9757 27008/55000 [=============>................] - ETA: 1s - loss: 0.0773 - acc: 0.9755 27872/55000 [==============>...............] - ETA: 1s - loss: 0.0783 - acc: 0.9752 28960/55000 [==============>...............] - ETA: 1s - loss: 0.0789 - acc: 0.9750 29984/55000 [===============>..............] - ETA: 1s - loss: 0.0801 - acc: 0.9744 30592/55000 [===============>..............] - ETA: 1s - loss: 0.0797 - acc: 0.9745 31136/55000 [===============>..............] - ETA: 1s - loss: 0.0795 - acc: 0.9744 32032/55000 [================>.............] - ETA: 1s - loss: 0.0794 - acc: 0.9744 33024/55000 [=================>............] - ETA: 1s - loss: 0.0793 - acc: 0.9745 34080/55000 [=================>............] - ETA: 1s - loss: 0.0789 - acc: 0.9748 35200/55000 [==================>...........] - ETA: 0s - loss: 0.0785 - acc: 0.9749 36256/55000 [==================>...........] - ETA: 0s - loss: 0.0790 - acc: 0.9746 37440/55000 [===================>..........] - ETA: 0s - loss: 0.0785 - acc: 0.9749 38496/55000 [===================>..........] - ETA: 0s - loss: 0.0784 - acc: 0.9749 39552/55000 [====================>.........] - ETA: 0s - loss: 0.0785 - acc: 0.9749 40608/55000 [=====================>........] - ETA: 0s - loss: 0.0786 - acc: 0.9749 41696/55000 [=====================>........] - ETA: 0s - loss: 0.0785 - acc: 0.9749 42816/55000 [======================>.......] - ETA: 0s - loss: 0.0782 - acc: 0.9749 43904/55000 [======================>.......] - ETA: 0s - loss: 0.0776 - acc: 0.9750 44960/55000 [=======================>......] - ETA: 0s - loss: 0.0775 - acc: 0.9750 46048/55000 [========================>.....] - ETA: 0s - loss: 0.0771 - acc: 0.9752 47136/55000 [========================>.....] - ETA: 0s - loss: 0.0772 - acc: 0.9752 48224/55000 [=========================>....] - ETA: 0s - loss: 0.0770 - acc: 0.9753 49248/55000 [=========================>....] - ETA: 0s - loss: 0.0770 - acc: 0.9754 50272/55000 [==========================>...] - ETA: 0s - loss: 0.0769 - acc: 0.9754 51232/55000 [==========================>...] - ETA: 0s - loss: 0.0771 - acc: 0.9753 52192/55000 [===========================>..] - ETA: 0s - loss: 0.0770 - acc: 0.9754 52992/55000 [===========================>..] - ETA: 0s - loss: 0.0771 - acc: 0.9753 53568/55000 [============================>.] - ETA: 0s - loss: 0.0771 - acc: 0.9754 54496/55000 [============================>.] - ETA: 0s - loss: 0.0772 - acc: 0.9752 55000/55000 [==============================] - 3s 52us/sample - loss: 0.0773 - acc: 0.9752 - val_loss: 0.0723 - val_acc: 0.978832/10000 [..............................] - ETA: 0s - loss: 0.0410 - acc: 0.96882496/10000 [======>.......................] - ETA: 0s - loss: 0.1088 - acc: 0.96715280/10000 [==============>...............] - ETA: 0s - loss: 0.0977 - acc: 0.97057936/10000 [======================>.......] - ETA: 0s - loss: 0.0810 - acc: 0.9757 10000/10000 [==============================] - 0s 22us/sample - loss: 0.0756 - acc: 0.9776Process finished with exit code 0準確率達到97.76%,還是相當不錯的吧。至此,深度學習之“Hello World”示例完畢~~~
總結
以上是生活随笔為你收集整理的Python深度学习之分类模型示例,MNIST数据集手写数字识别的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Google 系两公司联手,要让无人车少
- 下一篇: 用matplotlib显示一下MNIST