3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

SLAM:现在,未来和鲁棒感知时代

發布時間:2025/5/22 编程问答 21 豆豆
生活随笔 收集整理的這篇文章主要介紹了 SLAM:现在,未来和鲁棒感知时代 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章目錄

  • SLAM 研究的時代劃分
    • the classical age (1986 - 2004)
    • the algorithmic-analysis age (2004 - 2015)
    • the robust-perception age (now)
  • 自主機器人真的需要SLAM嗎?
  • SLAM問題被解決了嗎?
  • SLAM算法魯棒性
    • SLAM算法魯棒性面臨的主要挑戰
      • 數據關聯(data association)
      • 惡劣環境(harsh environment)
    • 研究現狀
      • 前端短期數據關聯(short-term data association)
      • 前端長期數據關聯(long-term data association)
        • 前端回環閉合檢測(loop closure detection )
        • 前端回環閉合驗證(loop closure validation)
      • 后端回環閉合驗證
      • 動態環境的處理
    • 待解決的問題(open problem)
      • SLAM失效保護和恢復(failsafe SLAM and recovery)
      • 對硬件失效的魯棒性(robustness to HW failure)
      • 幾何重定位(metric relocalization)
      • 隨時間變化的、可變形的地圖(time varing and deformable map)
      • 自動化調參(Automatic parameter tuning)
  • SLAM的場景尺度(scalability)
    • 研究現狀
      • 節點、邊緣稀疏化(node and edge sparsification)
      • 去中心化(并行)SLAM(out-of-core (parallel) SLAM)
      • 分布式多機器人SLAM(distributed multi robot SLAM)
    • 待解決的問題
      • 地圖維護(map maintenance)
      • 魯棒分布式建圖(robust distributed mapping)
      • 學習,遺忘,記憶(learning, forgetting, remembering)
      • 資源有限的平臺(resource-constrained platform)
  • 地圖表示:幾何度量推理(metric reasoning)
    • 稀疏路標表示(landmark-based sparse representation)
    • 低層原始數據稠密表示(low-level raw dense representation)
    • 邊界和空間分割稠密表示(boundary and spatial-partitioning dense representation)
    • 基于物體的高階表示(high-level object-based representation)
    • 待解決的問題(open problem)
      • SLAM中的高層表示(high-level, expressive representations in SLAM)
      • 最優表示(optimal representations)
      • 自動、自適應表示(automatic, adaptive represetation)
  • 地圖表示:語義推理(semantic reasoning)
    • 語義SLAM vs 拓撲SLAM(semantic SLMA vs topological SLAM)
    • 語義的結構和具體內容(semantic SLAM: structure and detail of concepts)
    • 語義建圖的研究現狀
    • 待解決的問題(open problem)
      • 語義建圖不只是一個分類問題
      • 忽略、察覺和適應(ignorance, awareness, and adaptation)
      • 基于語義的推理
  • SLAM中的新理論工具
  • 主動SLAM(active SLAM)
  • SLAM中的新傳感器


本文為對綜述論文Simultaneous Localization And Mapping: Present, Future, and the Robust-Perception Age的理解和心得,本文受眾為,對SLAM問題有一個全面的基礎認知,想進一步尋找SLAM研究方向的童鞋。
對該綜述論文的學習還可以參考:
【泡泡機器人翻譯專欄】SLAM: 現在,未來和魯棒年代(一)
【泡泡機器人翻譯專欄】SLAM: 現在,未來和魯棒年代(二)
【泡泡機器人翻譯專欄】SLAM: 現在,未來和魯棒年代(三)
【泡泡機器人翻譯專欄】SLAM: 現在,未來和魯棒年代(四)
【泡泡機器人翻譯專欄】SLAM: 現在,未來和魯棒年代(五)

?

SLAM 研究的時代劃分

Cadena等人把SLAM問題的研究劃分為3個時代:

  • the classical age (1986 - 2004)
  • the algorithmic-analysis age (2004 - 2015)
  • the robust-perception age (now)
  • the classical age (1986 - 2004)

    在SLAM問題研究的前20年,主要是提出問題和理清框架,這一階段的主要有兩個成果:

  • 對SLAM問題,引入了一些主要的概率形式表述框架(probabilistic formulation),包括基于擴展卡爾曼濾波器(Extended Kalman Filters),Rao-Blackwellised 粒子濾波器(Rao-Blackwellised Partical Filter)和極大似然估計的方法(Maximum Likelihood Estimation);
  • 指出了SLAM問題在效率(efficiency)和魯棒的數據關聯(robust data association)方面面對的挑戰。
  • the algorithmic-analysis age (2004 - 2015)

    這一階段對SLAM問題進行算法上的分析,主要成果為:

  • 研究了SLAM問題的基本性質,包括可觀測性(observability),收斂性(convergence)和一致性(consistency);
  • 理解了SLAM問題的稀疏性(sparsity),更具體一點,是理解了增量方程中H矩陣結構的稀疏性,這對于SLAM的效率起著至關重要的作用。
  • 一些主要的開源SLAM框架也在這一階段被開發了出來。
  • the robust-perception age (now)

    Cadena等人認為,在我們正處于的這個時代,這個階段SLAM領域的研究有以下特點:

  • 魯棒性能(robust performance)。未來的SLAM系統能夠在任意環境下以低失效率長期運行,包含失效保護機制,有自動調參的能力,也就是能夠調整系統參數來適應不同的場景;
  • 高層次的理解能力(high-level understanding)。未來的SLAM系統不僅能夠實現基本的幾何重建,還能在更高的層次上理解環境信息(e.g., semantic, affordances, high-level geometry, physics);(affordance指的是,對于給定的環境或者物體,給定的機器人可以采取的動作的集合)
  • 資源敏感(resource awareness)。未來的SLAM系統可以被裁剪以適應實際的傳感器和可用計算資源,也可以根據可用計算資源調整計算負載(我理解這里的意思是,如果計算資源充足,可以充分利用計算能力提高精度)。
  • 任務驅動的推理(task-driven inference)。未來的SLAM系統能夠生成自適應的地圖表示(adaptive map representations),地圖表示的復雜性取決于機器人所要執行的任務。
  • 自主機器人真的需要SLAM嗎?

    要回答這個問題,必須先理解是什么使得SLAM如此獨特。SLAM旨在通過同時利用運動觀測信息和回環閉合信息,建立一個全局一致的環境表示。其中回環閉合是至關重要的,如果去掉回環閉合,SLAM就退化為里程計。在一些早期的應用中,輪式編碼器被作為里程計使用。使用輪式里程計估計位姿,很快就會發生漂移,移動幾米后估計出的位姿可能就無法使用了 。而對外部路標的觀測可以有效一致軌跡漂移,甚至能糾正它,這是發展SLAM的主要原因之一。然而,近期的一些基于視覺和慣導信息的里程計算法,漂移非常小(小于軌跡長度的0.5%)。因此這個問題就變得合理了:我們真的需要SLAM嗎?我們的回答分為三部分:

  • 首先,我們發現過去十年中,視覺-慣性里程計代表了SLAM研究的最新進展。從某種意義上說,視覺-慣性導航(VIN, visual-inertial navigation)就是SLAM:VIN可以看作回環閉合(或場景識別)模塊被關閉的SLAM系統。如果只考慮簡單場景(比如航空中的慣性導航),可能并不需要SLAM,但是在更一般的情況下,實際場景會更具挑戰性(比如,滅有GPS信號,低性能傳感器),這就需要SLAM研究實際場景中的多傳感器融合問題。
  • 第二個回答與回環閉合有關。一個忽略回環閉合的高性能里程計,會將世界(環境)解釋為一個“無窮的走廊”(infinite corridor),機器人會在這個“走廊”中不斷探索新的環境。而回環閉合會告訴機器人,這個“走廊”其實不是無窮的,沿著走廊走可能會回到之前到過的位置。

    現在回環閉合的優勢就很明顯:通過回環閉合檢測,機器人可以理解環境真正的拓撲關系,可以找到位置之間的最短路徑(比如,圖中的點B與點C)。那么,既然獲得環境的正確拓撲關系是SLAM的重要價值,那么為什么不丟棄幾何度量信息,只做位置識別呢?答案很簡單:幾何度量信息使得位置識別更加簡單、更加魯棒。幾何重建可以檢測回環閉合,并且可以剔除錯誤的回環閉合。因此,盡管SLAM在理論上可能是冗余的(一個可靠的位置識別模塊就可以實現拓撲建圖),SLAM可以天然地抑制錯誤的數據關聯(data association)和感知混淆(perceptual aliasing,感知混淆指的是環境中不同的地點,有著相似的場景外觀,會造成錯誤的場景識別)。從這個意義上講,SLAM地圖(就是前面說的幾何度量重建結果)可以預測并驗證測量的有效性,我們認為一點對于SLAM系統的魯棒運行至關重要。
  • 我們的第三個回答是,我們需要SLAM,
    不同的SLAM系統有著各自擅長完成的任務,因此一個機器人專家設計SLAM系統時,需要面對多種設計選擇。比如,拓撲地圖可以用來分析一個給定的位置是否可以到達,但是不適合用于運動規劃和底層控制;局部一致的幾何度量地圖,適合用于避障和與環境的局部交互,但是它的精度不高;全局一致的幾何度量地圖,可以使機器人完成全局路徑規劃,但這種地圖的計算和維護成本比較高。選擇合適的SLAM系統的更一般的方法是,把SLAM看作一個計算充分統計量(sufficient statistic)的機制,這個充分統計量包含了機器人過去所有的觀測。從這個意義上講,壓縮的地圖表示中需要保留哪些信息,是與任務深度相關的。
  • SLAM問題被解決了嗎?

    這個一個再機器人領域經常被提起的問題,在我初學SLAM的時候,這是一個很困擾的問題,因為一些現有的開源框架如ORB-SLAM2、SVO、DSO和、OKVIS、VINS-Mono等,在算法框架上已經很成熟了,而且在數據集上也有著很好的表現,似乎剩下的工作就只是將它們工程化、實用化,根據實際應用需求進行微小改動而已。
    Cadena等人認為,這個問題很難去回答,之所以很難回答,困難來自于這個問題本身:SLAM是一個很寬泛的話題,只有再在給定了,機器人平臺/環境/性能要求(robot/environment/performance)的配置組合時,這個問題本身才能得到清晰的定義。
    更具體的,可以根據以下幾個方面的內容來評估一個SLAM問題的成熟度:

  • 機器人平臺(robot):
    • 運動類型(比如,動力學、最大運動速度);
    • 可用的傳感器(比如分辨率、采樣頻率);
    • 可用的計算資源。
  • 環境(environment):
    • 平面環境/3D環境;
    • 自然路標/人工路標;
    • 動態元素的數量;
    • 對稱的數量(?ammount of symmetry);
    • 感知混淆的風險。這個方面的問題實際上取決于傳感器與環境的組合情況:比如兩個不同的房間對于2D激光雷達來說可能掃描結果很相似(感知混淆),但是相機可以根據外觀信息區分它們。
  • 性能要求(performance requirements):
    • 機器人狀態估計的期望精度;
    • 環境地圖表示的類型與期望精度(比如,基于稀疏路標或者稠密點云);
    • 成功率(這里的成功率指的是,滿足精度邊界的測試結果占測試總量的比例);
    • 估計延時(estimation latency);
    • 最大運行時間;
    • 最大地圖尺寸(地圖面積或者地圖體積);
  • 舉個例子,使用機器人構建一個室內環境的2D地圖,機器人配置了輪式編碼器和激光掃描儀,期望有足夠的精度(<10cm)和魯棒性(簡單來說,就是低失效率),這種SLAM問題可以認為已經被解決。類似的,運動緩慢的機器人(比如火星探路車,室內機器人)使用的基于視覺的SLAM和視覺-慣性里程計被認為是成熟的研究領域。而另一些機器人平臺/環境/性能要求配置下的SLAM問題,仍然需要大量的基礎研究。當機器人運動或者環境條件過于具有挑戰性時(比如機器人快速運動,高度動態的環境),當前的SLAM系統很容易失效。當前的SLAM系統通常也無法滿足苛刻的性能要求,比如快速估計以用于機器人的閉環控制。

    SLAM算法魯棒性

    SLAM算法魯棒性面臨的主要挑戰

    數據關聯(data association)

    數據關聯錯誤,是導致SLAM算法失效的一個主要原因。數據關聯把觀測值和相應的狀態進行關聯。以特征點法視覺SLAM為例,它把每一個特征點與相應的路標點進行關聯。感知混淆(perceptual aliasing,感知混淆是指,對于不同的輸入,傳感器感知到了相同信號的現象)使得正確的數據關聯變得特別困難。感知混淆會使數據關聯建立錯誤的觀測-狀態(measurement-state)匹配關系(false positive,假陽性),這會導致后端優化作出錯誤的狀態估計。

    如果沒有對環境的動態性(包括短期變化和長期的季節性變化)進行建模,數據關聯錯誤的情況會很嚴重。當前的SLAM系統,通常都會假設機器人所處的環境是靜態的。對于小尺度場景下的單次建圖,如果環境在短期內沒有動態性(比如沒有人或者其它物體在周圍移動),那么靜態環境假設(static world assumption)是可取的。但是如果在更長的時間尺度和更大的空間尺度上進行建圖,環境的變化是不可避免的,這種情況下靜態環境假設就不合理了。環境的變化來自很多方面:晝夜變化,季節變化(比如樹葉的變化),環境結構的變化(比如舊建筑物翻新)。這些環境變化都會影響SLAM系統的性能。比如:晝夜極端的光照變化,會使得依賴視覺特征復現性的SLAM系統失效;舊的環境結構消失,會導致基于環境幾何結構的SLAM系統失效。

    惡劣環境(harsh environment)

    SLAM算法魯棒性面臨的另一個挑戰,是其在惡劣環境下的運行,比如水下環境。這些惡劣環境下面臨的挑戰是:低能見度(low visibility),持續變化的環境,以及無法使用一些常用傳感器(如激光雷達等)。

    研究現狀

    前端短期數據關聯(short-term data association)

    由數據關聯錯誤造成的魯棒性問題,既可以在SLAM系統的前端進行處理,也可以在SLAM系統的后端處理。一般來說,SLAM前端建立的數據關聯是可信的。短期的數據關聯是最容易處理的:如果傳感器的采樣頻率,相比于機器人自身的運動足夠快的話,那么對于同一3D路標的跟蹤就比較容易。比如,我們想從連續圖像中跟蹤一個3D點,且假設圖像的幀率足夠高,那么基于描述子的普通匹配方法,或者光流法就可以實現可靠的跟蹤。直觀上講,在高幀率情況下,傳感器(攝像頭、雷達)的視角變化不大,因此t+1時刻的特征與t時刻的特征非常接近(相比于長期數據關聯,短期的數據關聯問題更加簡單,關聯結果更加可靠,這也是視覺/慣性里程計比SLAM簡單的原因)。

    前端長期數據關聯(long-term data association)

    在SLAM前端進行長期數據關聯更具有挑戰性,它包括回環閉合的檢測和驗證(loop closure detection and validation)。

    前端回環閉合檢測(loop closure detection )

    對于SLAM前端的回環閉合檢測,一個比較直觀的方法就是,在當前觀測(比如圖像)中檢測特征,將其之前所有檢測到的特征進行對比,但考慮到計算量,這種暴力求解方法是不切實際的。詞袋模型(bag-of-words)通過對特征空間進行量化,從而實現了更加有效的搜索,避免了暴力搜索。詞袋模型可以設計為層級式字典樹(hierarchical vocabulary tree),這種結構可以實現大規模數據集中的高效查找。

    基于詞袋模型的方法,在單次任務回環閉合檢測中表現出了非常可靠的性能。但是這些方法無法處理劇烈的光照變化,因為光照劇烈變化時,就無法與字典樹中的視覺單詞(visual word)匹配上了。為了處理這個問題,有的方法匹配圖像序列,有的方法把不同的視覺特征整合為同一的表示,還有的方法同時使用空間信息和視覺特征,視覺場景識別的詳細內容可參考綜述論文Visual Place Recognition: A Survey。在基于激光雷達的SLAM前端,基于特征的方法也可以用來進行回環閉合檢測。

    前端回環閉合驗證(loop closure validation)

    回環閉合驗證,指的是通過額外的幾何驗證步驟來確保回環閉合的質量。在基于視覺的方法中,通常使用RANSAC進行幾何校驗,剔除離群點(outlier)。在基于激光雷達的方法中,激光雷達通過之前的掃描已經建出了地圖,可以通過計算當前激光雷達的掃描值與地圖的匹配度,來完成對回環閉合的驗證。

    后端回環閉合驗證

    盡管可以通過各種方法去增強SLAM前端在回環閉合檢測中的魯棒性,錯誤的回環閉合檢測還是無法被完全避免,比如出現感知混淆(perceptual aliasing)的時候。SLAM后端獲取錯誤的回環閉合檢測信息,會嚴重影響后端極大后驗估計(MAP)的質量。為了處理這個問題,有研究者提出了一些方法,可以使SLAM后端對于前端傳遞過來的錯誤回環閉合信息更加魯棒。有些方法在后端優化中添加與回環閉合相關的殘差項,通過殘差值推斷回環閉合檢測的正確性。在有一些方法中,與里程計數據相悖的回環閉合檢測結果被認為是錯誤的回環檢測,進而在后端優化之前,獲取關于錯誤回環檢測的先驗信息。

    動態環境的處理

    動態環境對SLAM算法研究的挑戰主要有兩方面:

  • SLAM系統需要檢測、丟棄和跟蹤環境中的變化。目前的主流方法選擇剔除環境中動態變化的部分,但也有一些研究把動態變化的元素作為環境的一部分進行建模。
  • SLAM系統需要對環境中的永久變化(permanent change)或半永久變化(permanent change)進行建模,系統需要理解什么時候應該更新地圖,以及該如何更新地圖。現有的SLAM系統在處理動態場景時主要有兩種方式:一是維護同一個位置的多個地圖;二是只維護一個地圖,但是構建地圖的參數是時變的。
  • 待解決的問題(open problem)

    SLAM失效保護和恢復(failsafe SLAM and recovery)

    盡管SLAM后端已經取得了很大進步,現在的SLAM系統求解器在出現離群點(outlier)時依然很脆弱。這主要是因為,幾乎所有的魯棒SLAM方案都是基于非凸目標函數的迭代優化,這會導致兩個結果:第一,離群點的去除效果取決于優化過程中初始估計的質量;第二,系統具有內生的脆弱性:后端優化即使只使用了一個離群點,都會降低狀態估計的質量,糟糕的狀態估計又會反過來降低系統剔除后續離群點的能力。

    一個理想的SLAM系統應該具有失效保護和失效偵測的能力,系統必須能檢測到突發的失效情況(比如由離群點或者硬件老化造成的失效),要有恢復機制進行適當操作,使得系統能夠重新正常工作。現有的SLAM系統沒有這些功能。

    對硬件失效的魯棒性(robustness to HW failure)

    解決硬件失效問題并不屬于SLAM的研究范疇,但硬件失效會影響SLAM系統,SLAM系統反過來會對,檢測、減少傳感器失效和運動失效,發揮重要作用。如果傳感器精度由于硬件故障或老化而降低,那么傳感器的測量(包含噪聲和偏置),就不再與后端優化中所使用的傳感器噪聲模型相匹配,這會導致較差的估計結果。這就引出了各種需要研究的問題:如何檢測傳感器的不良運行狀態?如何相應地調整傳感器噪聲模型中的協方差和偏置?

    幾何重定位(metric relocalization)

    幾何重定位,是指估計機器人當前時刻,在已建地圖中的位姿。相對于基于特征(feature-based)的重定位,基于外觀(appearance-based)的重定位能在晝夜、不同的季節之間實現回環閉合檢測,但得到的回環閉合結果,本質上是拓撲的,是沒有幾何度量信息的。對于幾何度量重定位來說,基于特征的方法仍然是最常用的,而這種方法不能被擴展到晝夜、不同季節場景下的重定位。

    目前很多SLAM系統都選擇視覺傳感器(攝像頭),魂環閉合問題變成了一個傳感器信號匹配的問題。盡管攝像頭是主要的傳感器,其它的傳感器數據和SLAM系統中的一些其它信息也可以用于幫助重定位。Brubaker等人使用軌跡(trajectory)匹配來克服相機的缺陷;先使用一種傳感器模式進行建圖,然后再建好的圖中使用另一種傳感器模式進行重定位,這也是一個研究方向。

    另一個問題是,如何根據不同來源、不同視角的傳感器數據進行定位。Forster等人研究了在激光雷達地圖中的視覺定位問題。Majdik等人研究了如何在Google街景圖片的3D紋理圖上定位無人機。Behzadin等人展示了如何使用激光掃描儀在手繪地圖中定位。Winterhalter等人演示了如何在給定的2D戶型圖上,使用RGB-D傳感器進行定位。

    隨時間變化的、可變形的地圖(time varing and deformable map)

    主流SLAM系統都假設世界是靜止的,然而由于物體的動態變化,以及物體天然的變形特性,真實世界不是一成不變的。一個理想的SLAM方案應該能夠處理環境中的非剛體性(non-rigidity)等動態因素,能夠長時間工作生成全地形圖(“all terrain map”),而且能夠實時完成這些工作。

    在計算機視覺領域,從80年代起就有研究嘗試恢復非剛性物體的形狀,但它們只能在限定條件下使用。比如Pentland等人的論文需要知道關于目標力學性質的先驗性息。Bregler等人的論文需要對目標的變形進行限定,他們展示了人臉形狀恢復的例子。近期的非剛體SFM研究成果,限定條件減少了,但仍然只能應用于小場景。在SLAM領域,Newcombe等人解決了非剛體場景下的小規模重建問題。然而,非剛體場景的大規模重建問題仍有待研究。

    自動化調參(Automatic parameter tuning)

    SLAM系統(尤其是數據關聯模塊)需要大量的參數調整,以保證其在給定的場景中能夠正常工作。這些參數包括控制特征匹配的閾值,RANSAC參數,向因子圖中添加新因子的標準,判斷回環閉合的標準。如果想要SLAM系統不經手動調整,就能在各種場景下使用,那就必須考慮參數自動調整。

    SLAM的場景尺度(scalability)

    現代SLAM系統已經成功地應用于室內場景。但在許多應用嘗試中,比如用于環境檢測的海洋探索機器人、城市中7天24小時工作的清潔機器人、大場景下的高精度農業機器人應用等,機器人需要在大場景中長時間工作。在這些應用中,隨著運行時間增長,機器人不斷探索新的位置,SLAM系統中因子圖的規模隨會一直增長,可能沒有邊界。而實際應用中機器人的計算時間和內存容量有限,因此設計出時間復雜度和內存占用有限的SLAM系統非常重要。

    在最壞情況下,基于直接線性求解器的連續線性方法,其內存占用按照公式6中的變量數量的二次方增長。當使用線性迭代求解器(比如共軛梯度法)時,內存占用隨著變量數量線性增長。當多次路過同一個地方時,情況可能會更復雜,因為節點(node)和邊(edge)會被持續添加到同一個空間中,會破壞因子圖結構的稀疏性,因此因子圖優化的效率會變低。

    研究現狀

    這一部分的內容,回顧了當前控制、或者說是降低問題規模增長的方法。我們主要關注兩種降低因子圖復雜度的方法:

  • 稀疏化方法。為了節省內存和提高計算效率,損失一些信息;
  • 去中心化(out-of-core)和多機器人方法。講計算任務分配到多個機器人/處理器上。
  • 節點、邊緣稀疏化(node and edge sparsification)

    這一類方法,通過減少添加到圖中的節點的數量,或者裁剪具有較少信息(less “informative”)的節點和因子,來解決問題規模過大的問題。Ila等人使用信息論方法,只將非冗余節點和信息含量高的節點添加到圖中。Johannsson等人盡量避免往圖中添加新的節點,而是在現有節點之間引入約束,這樣變量數量只取決于探索空間的大小,而不是運行時間。Kretzschmar等人提出了一種基于信息的評判標準(an information-based criterion),來決定將位姿圖優化中的哪些節點進行邊緣化。Carlevaris-Bianco和Eustice提出了線性約束因子(Generic Linear Constraint (GLC) factors),Mazuran等人提出了非線性圖稀疏化(Nonlinear Graph Sparsification (NGS) ),這兩種方法在一個邊緣化節點的馬爾可夫毯(markov blanket)上進行操作,它們計算出毯的稀疏近似。Huang等人通過求解一個L1范數最小化問題將Hessian矩陣稀疏化。

    去中心化(并行)SLAM(out-of-core (parallel) SLAM)

    SLAM并行算法,將因子圖優化的計算任務分配給多個處理器。主要的思路就是將因子圖拆分為子圖,先對每一個子圖進行局部優化,然后加上一個全局優化,這種方法通常被稱為子圖構建算法(submapping algorithm)。Ni等人展示了一種因子圖優化的子圖構建算法,還提出緩存子圖的因子分解(cache the factorization of the submaps)來加速計算。Ni和Dellaert使用二叉樹結構構建子圖,并使用嵌套分割(nested dissection)來減少兩個子樹之間的依賴。Zhao等人提出了一種針對大場景SLAM的近似策略,他們先處理一個子圖的序列,然后使用最小二乘法,以分治法(divide and conquer)的形式合并這些子圖。Frese等人提出了一種多層松弛方法(multi-level relaxation approach)。Grisetti等人提出了一種子圖層級結構:一旦有新的觀測值,就改動最頂層的子圖,只有被嚴重影響的區域,才在更底層的層級上去修改子圖。Suger等人提出了一種基于層次分解(hierarchical decomposition)的SLAM近似方法。Choudhary等人通過ADMM算法(Alternating Direction Method of Multipliers)實現并行計算。Klein和Muray將定位和建圖解耦為兩個并行的線程。Sibley等人通過對局部鄰域的相對參數化進行優化,來減少計算量。Strasdat等人采用了一種兩步走的方法,首先優化局部位姿-特征圖(pose-features graph),然后再優化位姿-位姿圖(pose-pose graph)。Williams等人將因子圖優化分解為兩個線程:一個速度較快的濾波線程,和一個速度較慢的平滑線程,他們之間周期性地同步。

    分布式多機器人SLAM(distributed multi robot SLAM)

    一種實現大尺度場景建圖的方法是使用多機器人SLAM,將整個大場景分成多個較小的區域,一個機器人負責一個小區域。這種方法主要有兩個變種:

  • 中心式(centralized)。在中心式方法中,機器人各自構建子地圖,然后把局部信息傳遞給一個中心站,由中心站進行后續推斷;
  • 分散式(decentralized)。在分散式方法中,不存在做數據融合的中心站,各個agent通過局部通信實現估計的一致性。
  • Nerurkar等人提出了了一種基于分布式共軛梯度法的協作定位算法。Argues等人使用分布式雅可比方法估計一組2D位姿。Araguez等人調研了基于一致性的地圖融合方法。Knuth和Barooah使用分布式梯度下降法估計3D位姿。Cunnigham等人使用高斯消元法,開發了一種稱為DDF-SAM的方法,每個機器人通過隔離器(separators,多個機器人共享的變量)交換高斯邊緣。

    高斯消元法是最常用的方法,但是它有兩個缺點:
    第一,機器人之間需要交換的邊緣值(marginal)是稠密(dense)的,而且通信代價是隔離器(separators,多個機器人共享的變量)數量的二次方。這就催生了使用稀疏化技術來降低通信代價的方法。

    第二,高斯消元法需要對問題進行線性化,因此像DDF-SAM這樣的方法需要很好的線性點,以及復雜的bookkeeping來確保多個機器人之間線性點的一致性。Choudhary等人提出Gauss-Seidel算法替代高斯消元法,這種算法的通信負擔隨隔離器數量線性增長。

    待解決的問題

    盡管有大量的研究工作致力于降低因子圖優化的復雜度,SLAM系統在諸如長時間運行(long-term operation)等方面還有很長的路要走。

    地圖維護(map maintenance)

    一個很少被研究的問題是,SLAM在長期工作的時候如何存儲地圖。即使在存儲資源沒那么緊張的情況下,比如將數據存儲在云端,直接使用點云地圖或者體素地圖(volumetric map)這樣的原始數據也是對存儲資源的極大浪費。類似的在視覺SLAM中,視覺特征描述子所占據的存儲空間很快就會變得很龐大。一些早期的方法最近被用來在壓縮過的先驗地圖中進行定位,或者進行存儲效率高的稠密重建。

    魯棒分布式建圖(robust distributed mapping)

    離群點(outlier)的去除在單機器人的情況下已經實現,但是在多機器人SLAM領域離群點的問題被忽略了。處理虛假的觀測值非常有挑戰性,這主要有兩個方面的原因:

  • 首先,多個機器人之間可能沒有一個共同的參考坐標系,這使得檢測和去除錯誤的回環閉合很困難;
  • 其次,在分布式配置中,機器人需要從局部信息中檢測離群點。這種方法也有待探索。
  • 學習,遺忘,記憶(learning, forgetting, remembering)

    在長期建圖(long-term mapping)過程中,有很多有待解決的問題:以什么樣的頻率去更新地圖中的信息?如何判斷地圖信息過期(outdated)且可以被丟棄?什么事件可以丟棄地圖信息?哪些地圖信息是可以被丟棄的?哪些地圖信息是必須保留的?

    這些問題都是與具體任務相關的(task-dependent),沒有絕對的答案。

    資源有限的平臺(resource-constrained platform)

    如何將現有的SLAM方案應用于計算資源非常有限的平臺,也是一個有待解決的問題。當平臺的尺寸變小時,這個問題就變得尤為重要,比如手機、微型無人機和機器昆蟲等。許多SLAM算法計算成本很高,無法在這些平臺上運行,因此需要開發能夠平衡計算精度和計算成本的SLAM算法。在多機器人場景下也面臨著資源限制的問題:如何保證機器人編隊在帶寬資源有限和通信不穩定的情況下可靠地運行?Cielewski等人提出的“版本控制”(“version control”)方法是在這個方向的最早嘗試。

    地圖表示:幾何度量推理(metric reasoning)

    幾何度量地圖,是編碼環境幾何信息的符號結構(symbolic structure)。在SLAM中,如何為SLAM選擇合適的幾何度量地圖(或者擴展機器人當前所使用的幾何度量地圖),會影響許多研究領域,包括長時間導航、與環境的物理交互、人機交互。

    在2D情況下,構建環境的幾何模型相對簡單,只有兩種主要范式:

  • 路標地圖(landmark-based maps)。在路標地圖中,環境被建模為路標的稀疏集合
  • 柵格地圖(occupancy grid maps)。在柵格地圖中,環境被離散化為許多柵格,每一個柵格會被賦予一個概率值,該值表征了這個柵格被占據的概率。
  • 2D環境中地圖的標準化問題,已經被IEEE RAS Map Data Representation Working Group解決了,可參見他們的論文IEEE Standard for Robot Map Data Representation for Navigation。這個標準定義了平面環境的兩種幾何度量地圖表示(還有拓撲地圖),用于數據交換(data exchange),參照基準(benchmarking)和技術轉移(techonology transfer)。

    3D環境的集合建模相對復雜(delicate),如何有效地對3D環境進行幾何建模,仍處于研究的早期階段。下面會以一個跨越機器人學(robotics)、計算機視覺(computer vision)、計算機輔助設計(CAD, computer aided design)和計算機圖形學(computer graphics)的廣闊視角,回顧3D環境的幾何建模方法。

    稀疏路標表示(landmark-based sparse representation)

    大多數SLAM方法把環境表示為3D稀疏路標的集合,這些路標對應著環境中有區分度的特征(比如線、角點等)。比較典型的例子有ORB-SLAM生成的稀疏點云地圖:

    這種地圖通常被稱為基于路標的表示(landmark-based representation)或者基于特征的表示(feature-based representation)。在SLAM的早期研究中,基于稀疏路標表示的地圖就被廣泛應用于移動機器人。這種地圖都有一個共同的假設前提:路標是有區分度的。具體來說,傳感數據不僅可以提供關于路標的幾何方面的數據,還要提供一個描述子,用來建立測量值與對應路標之間的數據關聯。大量稀疏路標地圖的工作集中在點特征的估計,機器人領域將稀疏路標地圖擴展到了更加復雜的幾何路標,包括線、區域和圓弧等。

    低層原始數據稠密表示(low-level raw dense representation)

    與基于稀疏路標表示的地圖不同,稠密表示旨在提供高分辨率的3D幾何模型,這種模型更加適合機器人避障和路徑規劃,或者用于可視化和渲染:

    在這些稠密表示模型中,低層原始數據描述3D幾何信息的方式有:使用非結構化的點集(點云)、使用多邊形集合(polygon soup)等。通過使用雙目相機、RGBD相機以及3D激光掃描儀等傳感器,點云模型(point cloud)已經在機器人領域中被廣泛應用。點云模型最近在單目直接法SLAM中流行起來,這種方法直接使用所有圖像像素的亮度值,估計機器人運動軌跡和構建環境的3D模型。

    面元地圖(surfel map, sufel 是surface element的縮寫,在3D計算機圖形學中,面元模型是多邊形模型的一中替代選擇)稍微復雜一些的表示,面元地圖用圓片集合(a set of disks)編碼幾何信息。

    這些稠密表示地圖的視覺效果很好,但是它們很笨重,因為需要存儲大量的數據。而且這種地圖對幾何信息的描述是低層級的,它們忽視了障礙物的拓撲結構。

    邊界和空間分割稠密表示(boundary and spatial-partitioning dense representation)

    不同于使用低層數據的非結構化點云地圖,邊界和空間分割稠密表示顯式地對表面(邊界)和體積進行建模。

    邊界表示通過物體的表面邊界對其進行3D建模。基于平面的模型是一種比較簡單邊界表示模型,更加一般的邊界表示包括基于曲線的表示(比如NURBS或B-splines的張量積),表面網格模型(相互連接的一些列多邊形)和隱式曲面表示(通過一個定義在R3上函數的零點來確定表面,這類函數包括徑向基函數、符號距離函數SDF和截斷符號距離函數TSDF等)。在機器人領域,TSDF是視覺SLAM常用的表示方法。

    空間劃分表示將3D物體表示為表面相鄰的不相交基元,最常用的方法是空間占用枚舉法(Spatial-occupancy Enumeration),這種方法將空間劃分為相同的一系列小立方體(體素),這些小立方體通常用3D柵格的形式組織。更有效的空間分割方法有八叉樹,多邊形地圖八叉樹和二值空間分割樹等。在機器人應用中,八叉樹表示已經被用于3D建圖。柵格占據地圖(每個柵格是否被占據,由一個概率值表示)可以看作是空間劃分表示的一種概率形式上的變體。在沒有懸空障礙物的3D環境中,也可以使用2.5D高程地圖。

    基于特征的稀疏方法、基于直接法的稠密方法,哪一種更好?答案取決于具體任務和性能要求(比如時間、精度和失效率等)。基于特征的方法存在一些缺點:依賴于特征的類型;依賴用于檢測和匹配的大量閾值參數;需要魯棒估計技術來處理錯誤的匹配結果;大部分特征檢測器在設計上的優化目標往往是速度,而不是準確度。基于直接法的稠密點云地圖,使用圖像中的所有信息,甚至是像素梯度很小的區域,因此它在低紋理場景、失焦和運動模糊的情況下性能由于基于特征的方法。然而稠密直接法需要很強的計算能力(GPUs),才能保證實時性。另外,如何聯合估計環境的稠密結構和自身運動,仍然有待解決(目前只能依次進行:先估計一個,然后估計另一個)。有兩種方法可以克服基于特征稀疏方法的缺點:

  • 半稠密法(semi-dense)。半稠密法只使用梯度大的像素(比如圖像邊緣),以此來解決稠密法對計算能力的高要求。
  • 半直接法(semi-direct)。半直接法同時采用了稀疏特征(比如角點和邊緣)和直接法,使用了半直接法的SVO證明了其高效性。而且,由于半直接法使用稀疏特征,這使得它可以聯合估計環境結構和運動
  • 基于物體的高階表示(high-level object-based representation)

    盡管目前點云表示和邊界表示在稠密建圖領域占據著統治地位,但是高層表示,比如物體(object)和實體形狀(solid shape)等,會在未來的SLAM中扮演著重要的角色。目前已有一些使用高階物體表示的SLAM系統,比如SLAM++等。實體表示(solid representation)顯式編碼了這樣一個事實:真實世界中的物體是三維的,而不是一維的(點)或者二維的(表面)。用實體形狀表示對物體建模,便于把物理屬性(比如體積、質量等)與物體進行關聯,這些物理屬性對機器人與環境交互至關重要。幸運的是,現有領域比如CAD和計算機圖形學已經在這些方面有很大發展。舉一些實體形狀表示的例子:

    • 參數化基元實例化(parameterized primitive instancing)。這種表示方法依賴于對一系列物體簇(比如圓柱體、球體)的定義。對于每一簇物體,給定一組參數(比如半徑、高度)的值,就可以唯一地確定該簇物體中的一個實例。據我所知,目前沒有采用這種表示方法的SLAM系統;
    • 掃描表示法(sweep representation)。掃描表示法包含兩個要素:一是做掃描運動的2D圖形(截面)或3D物體,二是掃描運動的方式。根據簡單的運動規則,2D或3D物體沿著空間中的軌跡掃描,生成實體。常用的掃描表示方法有:平移掃描和旋轉掃描。比如,一個圓柱體可以由一個圓沿著與其垂直的軸所在的方向掃描得到。在計算機視覺中,2D cross-sections 被稱為generalized cylinders,這種方法已經被用于機器人抓取。據我所知,目前并沒有SLAM系統使用掃描表示法。
    • 構造實體幾何(constructive solid geometry)。這種表示法通過基元之間的布爾運算(布爾運算是數字符號化的邏輯推演法,包含聯合、相交、相減)來定義復雜實體。一個實體被表示為一顆二叉樹,樹的節點表示構成實體的基元,樹的邊表示基元之間的布爾運算(機械設計課程中,使用solidworks畫圖時,零件似乎就是用這種形式構造的)。據我所知,目前也沒有SLAM系統使用這種表示方法。

    除此之外,還有一些其它的表示方法,包括feature-based models in CAD、affordance-based models、generative and procedural models和scene graphs。值得一提的是,機器人領域和計算機視覺領域已經開始考慮使用基于詞典的表示法,這種表示法通過詞典中詞的組合來定義實體。這個詞典可以通過對數據的學習得到,也可以是基于現有的物體模型。

    待解決的問題(open problem)

    以下這些關于SLAM中幾何度量表示的問題,需要大量的基礎研究,仍然有很多未知領域有待探索。

    SLAM中的高層表示(high-level, expressive representations in SLAM)

    最優表示(optimal representations)

    自動、自適應表示(automatic, adaptive represetation)

    地圖表示:語義推理(semantic reasoning)

    語義建圖(semantic mapping)需要將語義信息與機器人所處環境中的幾何實體進行關聯。最近,人們已經意識到了純粹幾何地圖的局限性,在構建環境語義地圖方面產生了很多的重要工作。語義地圖可以提升機器人的自主性和魯棒性、使機器人能夠處理更加復雜的任務(比如在行駛過程中避免泥濘道路)、從路徑規劃(path-planning)變成任務規劃(task-planning),以及實現高級的人機交互。在語義地圖方面,有著大量不同的方法,它們所使用語義信息的數量和類別不盡相同,也使用不同的方法將語義信息與環境中的不同部分進行關聯。此外,也有一些方法將低層的語義分析表述為一個分類問題,它們考慮的是傳感器數據與語義信息之間的簡單映射。

    語義SLAM vs 拓撲SLAM(semantic SLMA vs topological SLAM)

    拓撲建圖舍棄了幾何度量信息,僅僅通過場景識別來構建圖(graph,圖論中的圖),圖中的節點(node)表示不同的位置,圖中的邊(edge)表示不同位置之間的連通情況。語義建圖與拓撲建圖完全不同,拓撲建圖需要識別之前看到過的地方(不管它到底是廚房、走廊、或者別的什么),而語義建圖則需要根據語義標簽對這些位置進行分類。

    語義的結構和具體內容(semantic SLAM: structure and detail of concepts)

    對于人類來說,可能有無數的概念,這些概念之間也有著無數的相互關系,但是人類是任務驅動的(task-driven),根據任務需求,人類可以更加睿智的去選擇不同的層級和組織結構來使用這些概念。人類的這種特性,對于構建智能機器人是有借鑒意義的。語義的具體內容和組織方式,取決于機器人所處的環境,以及機器人所需要執行的任務。而語義的具體內容和組織方式,會在不同的階段影響問題的復雜性。因此,構建語義地圖需要確定以下兩方面的內容:

  • 語義的層級和具體內容(level/detail of semantic concepts)。對于一個給定的機器人任務,比如“從房間A到房間B”,初步的分類(比如房間、走廊、門)就可以很好的完成這個任務。但是對于其它的一些任務,比如“拿起一個茶杯”,就需要更加精細的分類(桌子、茶杯、玻璃杯)。
  • 語義的組織形式(organization of semantic concepts)。語義信息并不是唯一的(exclusive),多個語義信息可以表達同一個實體(比如凳子、板凳),一個語義信息也可以表達多個實體(比如桌子一個詞,既可以指課桌,也可以指飯桌)。一個實體可能有無窮多的屬性。一個椅子的屬性可能是“可移動的”和“可坐”,一個餐桌的屬性可能是“可移動”和“不可坐”。椅子和餐桌都是家具,它們都具有“可移動”的共同屬性,但是具有不同的用途。由于語義存在的這些特點,我們在組織語義信息時,不管使用扁平結構還是層級結構(flat or hierarchical organization),無論有沒有共同屬性,都必須要能夠處理語義信息的多樣性(multiplicity)。
  • 語義建圖的研究現狀

    在語義建圖或賦予數據語義信息方面,目前有3種主要方法:

  • SLAM幫助語義(SLAM helps semantics)
  • 語義幫助SLAM(semantics help SLAM)
  • SLAM與語義聯合推理(joint SLAM and semantic inference)
  • 待解決的問題(open problem)

    語義SLAM不像幾何度量SLAM那樣有一套成熟的框架,而是尚處于研究的早期階段。

    人類通過語義理解,可以預測環境在不同時間尺度下的變化情況。以上圖中中的一個工地為例,我們人類可以理解圖片底部的吊車的運動,并且可以預測它在短期內不會移動,同時我們還可以預測工地在施工完成后的外形,這樣在施工結束后,我們依然可以在完成自己在工地中的定位。這得益于人類可以對環境中目標的功能以及它們之間的相互關系進行推理,使機器人能夠具備相似的能力是語義SLAM中有待解決的問題。從工地的例子中,可以發現語義SLAM面臨的以下挑戰。

    語義建圖不只是一個分類問題

    語義概念要被處理為更加特定的信息,比如地圖中實體的affordance和actionability(affordance指的是,對于給定的環境或者物體,給定的agent可能采取的動作的集合,actionability指的是這些動作的預期效用),以及環境中不同agent之間可能產生的交互。如何表示這些屬性和相互關系,是高層的人機交互需要解決的問題。

    忽略、察覺和適應(ignorance, awareness, and adaptation)

    給定一些先驗知識,機器人要能夠推理出新的概念和它們的語義表示。也就是說,機器人要能夠發現環境中新的目標和類別,在與其它機器人或人類的交互中學習新的屬性,對環境中緩慢的或者突然的變化,自適應地采取相應的表示方法。

    舉個例子,一個輪式機器人需要分辨地形是否可行駛,然后通知導航系統。如果機器人發現道路上有泥巴,根據之前的分類結果,道路是可行駛的,機器人需要根據穿越這個泥濘地形的難度學習出一個新的類別,如果機器人察覺到有其它車輛陷在了泥濘中,那么它也要相應地調整它的分類器。

    基于語義的推理

    對于人類而言,我們可以利用語義信息,對環境進行壓縮,以及加速對環境的推理,而確定精確的集合度量對人類來說是很困難的事情。然而對于目前的機器人來說,卻不是這樣,機器人可以處理(帶有顏色信息)的集合度量表示,但它們不能真正地利用語義信息。目前我們的機器人還不能夠通過環境中的語義信息(類別、相互關系和屬性),進行有效的、高效的定位和持續建圖。

    舉個例子:當機器人探測到一輛汽車時,它應該能夠推理出汽車下的 地面(即使有遮擋),而且當這輛汽車移動時,機器人的傳感器會獲取新的數據,地圖更新應該可以優化之前猜測的地面。甚至,在優化地面的同時,機器人應該能夠通過單一有效的操作,將汽車作為一個整體更新其全局坐標,而不是更新每一個單一的體素。

    SLAM中的新理論工具

    主動SLAM(active SLAM)

    SLAM中的新傳感器

    總結

    以上是生活随笔為你收集整理的SLAM:现在,未来和鲁棒感知时代的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    大地资源网第二页免费观看 | 日本xxxx色视频在线观看免费 | 图片区 小说区 区 亚洲五月 | 久久久久se色偷偷亚洲精品av | 亚洲春色在线视频 | 国产亚洲精品精品国产亚洲综合 | 亚洲精品久久久久久久久久久 | 在线精品亚洲一区二区 | 色诱久久久久综合网ywww | 亚洲中文字幕在线无码一区二区 | 久久天天躁夜夜躁狠狠 | 国产精品第一区揄拍无码 | 国产精品沙发午睡系列 | 麻豆国产人妻欲求不满 | 狠狠cao日日穞夜夜穞av | 亚洲 欧美 激情 小说 另类 | 日本大香伊一区二区三区 | 国产9 9在线 | 中文 | 鲁鲁鲁爽爽爽在线视频观看 | 日本精品高清一区二区 | 又粗又大又硬毛片免费看 | 亚洲日韩一区二区三区 | 99久久无码一区人妻 | 日本一卡2卡3卡四卡精品网站 | 无码人妻黑人中文字幕 | 亚洲中文字幕va福利 | 麻豆av传媒蜜桃天美传媒 | 老熟妇乱子伦牲交视频 | 人妻熟女一区 | 天堂在线观看www | 2019午夜福利不卡片在线 | 亚洲小说图区综合在线 | 日本肉体xxxx裸交 | 国产成人av免费观看 | 十八禁视频网站在线观看 | 自拍偷自拍亚洲精品10p | 人妻少妇精品视频专区 | 国内精品人妻无码久久久影院蜜桃 | 欧美刺激性大交 | 成人欧美一区二区三区黑人免费 | 日韩av无码一区二区三区不卡 | 东京热一精品无码av | 欧洲熟妇精品视频 | 99久久精品国产一区二区蜜芽 | 国产69精品久久久久app下载 | 国产 精品 自在自线 | 草草网站影院白丝内射 | 国内丰满熟女出轨videos | 中文字幕中文有码在线 | 大肉大捧一进一出好爽视频 | 亚洲а∨天堂久久精品2021 | 国产情侣作爱视频免费观看 | 午夜理论片yy44880影院 | 精品国产精品久久一区免费式 | 亚洲国产欧美在线成人 | 秋霞特色aa大片 | av香港经典三级级 在线 | 亚洲一区二区三区含羞草 | 理论片87福利理论电影 | 熟妇人妻无码xxx视频 | 福利一区二区三区视频在线观看 | 国产办公室秘书无码精品99 | 国产精品第一区揄拍无码 | 久久久中文字幕日本无吗 | 亚洲国产精品久久久久久 | 久久精品人人做人人综合 | 亚洲色欲久久久综合网东京热 | 人妻少妇精品无码专区二区 | 无码国模国产在线观看 | 国产精品鲁鲁鲁 | 青草视频在线播放 | 国产香蕉尹人综合在线观看 | 2020久久香蕉国产线看观看 | 日本一本二本三区免费 | 水蜜桃亚洲一二三四在线 | 色老头在线一区二区三区 | 性做久久久久久久免费看 | 国产亚洲tv在线观看 | 自拍偷自拍亚洲精品10p | 精品无人区无码乱码毛片国产 | 亚洲国产欧美在线成人 | 国产又爽又猛又粗的视频a片 | 亚洲熟妇自偷自拍另类 | 久久精品人人做人人综合 | 久久人人爽人人爽人人片ⅴ | 中文字幕无码免费久久99 | 狠狠综合久久久久综合网 | 美女极度色诱视频国产 | 性生交片免费无码看人 | 欧美人与禽zoz0性伦交 | 特大黑人娇小亚洲女 | 日韩视频 中文字幕 视频一区 | 亚洲精品无码国产 | 亚洲s色大片在线观看 | 老头边吃奶边弄进去呻吟 | 午夜精品久久久久久久 | 大肉大捧一进一出视频出来呀 | 亚洲另类伦春色综合小说 | а√资源新版在线天堂 | 久久久久成人精品免费播放动漫 | 亚洲精品一区二区三区在线观看 | 曰韩无码二三区中文字幕 | √8天堂资源地址中文在线 | 国产亚洲欧美在线专区 | 国产后入清纯学生妹 | 性生交大片免费看女人按摩摩 | 国产特级毛片aaaaaa高潮流水 | 性生交大片免费看女人按摩摩 | 成人欧美一区二区三区黑人 | 久久www免费人成人片 | 在线亚洲高清揄拍自拍一品区 | 色综合久久久无码中文字幕 | 久久婷婷五月综合色国产香蕉 | 久久国产精品二国产精品 | 人人妻人人澡人人爽人人精品 | 真人与拘做受免费视频一 | 伦伦影院午夜理论片 | 成年美女黄网站色大免费视频 | 中文无码精品a∨在线观看不卡 | 国产成人精品视频ⅴa片软件竹菊 | a在线观看免费网站大全 | 国产美女极度色诱视频www | 香蕉久久久久久av成人 | 国产超碰人人爽人人做人人添 | 中文毛片无遮挡高清免费 | 亚洲色在线无码国产精品不卡 | 麻豆成人精品国产免费 | 丰满少妇人妻久久久久久 | 国产一区二区不卡老阿姨 | 欧洲vodafone精品性 | 久久综合九色综合欧美狠狠 | 日韩人妻无码中文字幕视频 | 日本一卡2卡3卡四卡精品网站 | 国产在热线精品视频 | 久久这里只有精品视频9 | 色噜噜亚洲男人的天堂 | 亚洲精品国偷拍自产在线观看蜜桃 | 国产精品美女久久久久av爽李琼 | 131美女爱做视频 | 日本一区二区三区免费高清 | а√天堂www在线天堂小说 | 大色综合色综合网站 | 国产精品自产拍在线观看 | 天下第一社区视频www日本 | 久精品国产欧美亚洲色aⅴ大片 | 老熟妇乱子伦牲交视频 | 综合激情五月综合激情五月激情1 | 激情国产av做激情国产爱 | 国产精品18久久久久久麻辣 | 国产精品永久免费视频 | 成人欧美一区二区三区黑人 | 成人性做爰aaa片免费看 | 国产亚洲人成a在线v网站 | 人人澡人人妻人人爽人人蜜桃 | 亚洲一区二区三区在线观看网站 | 免费无码av一区二区 | 中文字幕精品av一区二区五区 | 女人被男人躁得好爽免费视频 | 三级4级全黄60分钟 | 无码人妻久久一区二区三区不卡 | 在线精品亚洲一区二区 | 久久aⅴ免费观看 | 亚洲国产精品久久久天堂 | 色窝窝无码一区二区三区色欲 | 国产 浪潮av性色四虎 | 亚洲国产精品一区二区美利坚 | 欧美肥老太牲交大战 | 亚洲成a人一区二区三区 | 国产在热线精品视频 | 2019午夜福利不卡片在线 | 人妻人人添人妻人人爱 | 国产免费久久精品国产传媒 | 青草视频在线播放 | 搡女人真爽免费视频大全 | 亚洲人成影院在线无码按摩店 | 亚洲精品一区二区三区在线观看 | yw尤物av无码国产在线观看 | 丝袜人妻一区二区三区 | 中文字幕无码日韩欧毛 | 东北女人啪啪对白 | 欧美日韩亚洲国产精品 | 成人精品天堂一区二区三区 | 日韩无码专区 | 成人免费无码大片a毛片 | 亚洲国产欧美日韩精品一区二区三区 | 亚洲精品中文字幕久久久久 | 亚洲乱码日产精品bd | 国语自产偷拍精品视频偷 | 在线亚洲高清揄拍自拍一品区 | 久久99久久99精品中文字幕 | 丰满人妻一区二区三区免费视频 | 国产亚洲欧美在线专区 | 双乳奶水饱满少妇呻吟 | 亚洲理论电影在线观看 | 亚洲熟妇色xxxxx欧美老妇y | 无码人妻丰满熟妇区五十路百度 | 国产黄在线观看免费观看不卡 | 正在播放老肥熟妇露脸 | 精品人妻av区 | 亚洲色欲色欲天天天www | 国产一精品一av一免费 | 日韩精品久久久肉伦网站 | 无码国内精品人妻少妇 | 麻豆国产人妻欲求不满谁演的 | 玩弄人妻少妇500系列视频 | 中文字幕乱码人妻二区三区 | 夜夜躁日日躁狠狠久久av | 国产亚洲人成在线播放 | 欧美精品在线观看 | 色综合久久久无码中文字幕 | 成人无码视频免费播放 | 久久成人a毛片免费观看网站 | 装睡被陌生人摸出水好爽 | 欧美野外疯狂做受xxxx高潮 | 国产精品毛片一区二区 | 亚洲人成无码网www | 国产三级精品三级男人的天堂 | 亚洲日韩中文字幕在线播放 | 久久久www成人免费毛片 | 亚洲码国产精品高潮在线 | 国产香蕉97碰碰久久人人 | 丰腴饱满的极品熟妇 | 日日夜夜撸啊撸 | 国产激情一区二区三区 | 桃花色综合影院 | 国精产品一品二品国精品69xx | 男女性色大片免费网站 | 亚洲无人区午夜福利码高清完整版 | 久久国产自偷自偷免费一区调 | 无码av岛国片在线播放 | 国产精品美女久久久网av | 精品无码av一区二区三区 | 熟女少妇在线视频播放 | 久久无码人妻影院 | 亚洲色欲色欲欲www在线 | 国产亚洲tv在线观看 | 乱码av麻豆丝袜熟女系列 | 国产一区二区三区四区五区加勒比 | 丰满人妻一区二区三区免费视频 | 色综合视频一区二区三区 | 午夜嘿嘿嘿影院 | 精品久久8x国产免费观看 | 51国偷自产一区二区三区 | 思思久久99热只有频精品66 | 国内精品人妻无码久久久影院蜜桃 | 亚洲精品一区二区三区四区五区 | ass日本丰满熟妇pics | 日韩精品乱码av一区二区 | 99精品国产综合久久久久五月天 | 波多野结衣av在线观看 | 亚洲熟妇色xxxxx亚洲 | 亚洲中文字幕乱码av波多ji | 高潮毛片无遮挡高清免费 | 亚洲午夜久久久影院 | 丰满少妇人妻久久久久久 | 99麻豆久久久国产精品免费 | 99久久人妻精品免费一区 | 久久久久se色偷偷亚洲精品av | 亚洲娇小与黑人巨大交 | 97夜夜澡人人双人人人喊 | 欧美日韩一区二区三区自拍 | 欧美喷潮久久久xxxxx | 免费观看黄网站 | 无码人妻出轨黑人中文字幕 | 7777奇米四色成人眼影 | 成 人影片 免费观看 | 日产精品高潮呻吟av久久 | 日本饥渴人妻欲求不满 | 人人妻人人澡人人爽人人精品浪潮 | 内射老妇bbwx0c0ck | 亚洲日韩乱码中文无码蜜桃臀网站 | 双乳奶水饱满少妇呻吟 | 成人精品视频一区二区 | 中文字幕日产无线码一区 | 久久无码中文字幕免费影院蜜桃 | 国内精品一区二区三区不卡 | 2020久久香蕉国产线看观看 | 亚洲熟妇色xxxxx欧美老妇 | 亚洲の无码国产の无码影院 | 高中生自慰www网站 | 免费国产成人高清在线观看网站 | 亚洲色欲色欲欲www在线 | 奇米影视7777久久精品人人爽 | 亚洲中文字幕av在天堂 | 亚洲の无码国产の无码影院 | 成人精品一区二区三区中文字幕 | a在线观看免费网站大全 | 波多野结衣aⅴ在线 | 精品乱子伦一区二区三区 | 午夜福利不卡在线视频 | 人人爽人人澡人人人妻 | 国产精品丝袜黑色高跟鞋 | 欧美日韩综合一区二区三区 | 免费国产黄网站在线观看 | 欧美国产日韩久久mv | 中文字幕日韩精品一区二区三区 | 精品偷自拍另类在线观看 | 无码午夜成人1000部免费视频 | 日日噜噜噜噜夜夜爽亚洲精品 | 国产无套粉嫩白浆在线 | 国产人妻精品一区二区三区不卡 | 久久无码专区国产精品s | 日本熟妇大屁股人妻 | 欧美人与牲动交xxxx | 日本熟妇浓毛 | 免费看男女做好爽好硬视频 | 成人无码精品1区2区3区免费看 | 久久午夜夜伦鲁鲁片无码免费 | 99久久精品日本一区二区免费 | 成在人线av无码免观看麻豆 | 亲嘴扒胸摸屁股激烈网站 | 少妇性l交大片欧洲热妇乱xxx | 亚洲第一无码av无码专区 | 精品久久久无码人妻字幂 | 精品无码国产一区二区三区av | 亚洲中文字幕久久无码 | 人人爽人人爽人人片av亚洲 | 丰满人妻一区二区三区免费视频 | 精品一二三区久久aaa片 | 秋霞成人午夜鲁丝一区二区三区 | 野外少妇愉情中文字幕 | 久久综合久久自在自线精品自 | 国产无套内射久久久国产 | 日韩av无码一区二区三区不卡 | 国产一区二区三区精品视频 | 国产色精品久久人妻 | 中文字幕av无码一区二区三区电影 | 久久久久久九九精品久 | 乱人伦人妻中文字幕无码 | 久久精品一区二区三区四区 | 小sao货水好多真紧h无码视频 | 国产精品沙发午睡系列 | 亚洲精品www久久久 | 久久久久久久人妻无码中文字幕爆 | 两性色午夜免费视频 | 中文字幕色婷婷在线视频 | 波多野结衣av在线观看 | 无码乱肉视频免费大全合集 | 久久国产精品萌白酱免费 | 小sao货水好多真紧h无码视频 | 夜夜夜高潮夜夜爽夜夜爰爰 | 国产午夜无码视频在线观看 | 国产两女互慰高潮视频在线观看 | 中文精品无码中文字幕无码专区 | 男人的天堂2018无码 | 波多野结衣高清一区二区三区 | 久久精品国产99精品亚洲 | 少妇无码av无码专区在线观看 | 中文字幕乱妇无码av在线 | 永久免费精品精品永久-夜色 | 国产精品无码久久av | 日韩欧美中文字幕在线三区 | 婷婷丁香五月天综合东京热 | 一本加勒比波多野结衣 | 午夜性刺激在线视频免费 | 国产9 9在线 | 中文 | 少妇激情av一区二区 | 婷婷五月综合激情中文字幕 | 国产亚洲精品久久久久久国模美 | 国产精品igao视频网 | 国产精品a成v人在线播放 | 国产一区二区三区影院 | 成人无码视频免费播放 | 国产一区二区三区精品视频 | 无码人妻精品一区二区三区下载 | 亚洲一区二区三区四区 | 永久黄网站色视频免费直播 | 亚洲欧美日韩成人高清在线一区 | 欧美黑人乱大交 | 麻豆成人精品国产免费 | 毛片内射-百度 | 无码毛片视频一区二区本码 | 国产亚洲精品久久久久久大师 | 久久亚洲国产成人精品性色 | 色婷婷综合中文久久一本 | 日本精品人妻无码免费大全 | 99精品视频在线观看免费 | 国产乱人无码伦av在线a | 欧美喷潮久久久xxxxx | 老熟妇仑乱视频一区二区 | 国内丰满熟女出轨videos | 无码午夜成人1000部免费视频 | 成人三级无码视频在线观看 | 九九综合va免费看 | 久久综合给久久狠狠97色 | 亚洲综合无码久久精品综合 | 中文字幕无码热在线视频 | 国产欧美亚洲精品a | 国产精华av午夜在线观看 | 国产精品无码永久免费888 | 日韩精品无码免费一区二区三区 | 久久久久国色av免费观看性色 | 色五月五月丁香亚洲综合网 | 亚洲精品中文字幕 | 给我免费的视频在线观看 | 欧美性猛交xxxx富婆 | 丰满岳乱妇在线观看中字无码 | 精品亚洲韩国一区二区三区 | 好屌草这里只有精品 | 亚洲爆乳大丰满无码专区 | 亚洲人成人无码网www国产 | 大地资源网第二页免费观看 | 亚洲最大成人网站 | 人妻夜夜爽天天爽三区 | 对白脏话肉麻粗话av | 精品国偷自产在线视频 | 国产精品久久久久9999小说 | 97夜夜澡人人爽人人喊中国片 | 亚洲成av人片天堂网无码】 | 国产一区二区不卡老阿姨 | 国产三级久久久精品麻豆三级 | 亚洲精品国产品国语在线观看 | 亚洲熟妇色xxxxx欧美老妇y | 波多野结衣乳巨码无在线观看 | 亚洲精品成a人在线观看 | 国产亚洲人成a在线v网站 | 欧美性生交活xxxxxdddd | 人人妻人人澡人人爽欧美一区九九 | 午夜精品一区二区三区在线观看 | 色综合视频一区二区三区 | 久久熟妇人妻午夜寂寞影院 | 天堂а√在线中文在线 | 国产av剧情md精品麻豆 | 熟女少妇人妻中文字幕 | 亚洲欧洲无卡二区视頻 | 国产凸凹视频一区二区 | 亚洲精品久久久久久一区二区 | 精品一区二区不卡无码av | 帮老师解开蕾丝奶罩吸乳网站 | 无码av岛国片在线播放 | 大地资源中文第3页 | 精品国产一区二区三区四区在线看 | 中文字幕乱码人妻二区三区 | 日本xxxx色视频在线观看免费 | 最新国产乱人伦偷精品免费网站 | 亚洲а∨天堂久久精品2021 | 亚洲中文字幕无码一久久区 | 自拍偷自拍亚洲精品被多人伦好爽 | 国产亚洲精品久久久久久 | 无码国产激情在线观看 | 久久99久久99精品中文字幕 | 一个人看的视频www在线 | 俺去俺来也www色官网 | 精品久久久久香蕉网 | 国产午夜无码精品免费看 | 丰满妇女强制高潮18xxxx | 无码av中文字幕免费放 | 国产精品久久久久9999小说 | 老熟妇仑乱视频一区二区 | 国产精品嫩草久久久久 | 人妻无码久久精品人妻 | 欧美黑人性暴力猛交喷水 | 动漫av一区二区在线观看 | 亚洲色无码一区二区三区 | 亚洲欧美国产精品专区久久 | 亚洲中文字幕无码一久久区 | 国产精品亚洲专区无码不卡 | 一本久久a久久精品亚洲 | 国产成人无码a区在线观看视频app | 无码人妻黑人中文字幕 | 国产激情精品一区二区三区 | 久久久久久久久蜜桃 | 精品成在人线av无码免费看 | 欧美野外疯狂做受xxxx高潮 | 丰满少妇人妻久久久久久 | 日本爽爽爽爽爽爽在线观看免 | 欧美成人高清在线播放 | 国产一区二区三区精品视频 | 国产情侣作爱视频免费观看 | 国产亚洲视频中文字幕97精品 | 国产麻豆精品一区二区三区v视界 | 色一情一乱一伦一视频免费看 | 中文字幕亚洲情99在线 | 国产精品香蕉在线观看 | 中文字幕人妻无码一区二区三区 | 老子影院午夜精品无码 | 激情五月综合色婷婷一区二区 | 老子影院午夜伦不卡 | 国产精品资源一区二区 | 午夜福利一区二区三区在线观看 | 久久精品人妻少妇一区二区三区 | 亚洲小说春色综合另类 | 欧美日韩一区二区免费视频 | 国产无遮挡又黄又爽免费视频 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 波多野42部无码喷潮在线 | 亚洲国产精品久久人人爱 | 日韩av激情在线观看 | 亚洲精品国产第一综合99久久 | 男女爱爱好爽视频免费看 | 美女扒开屁股让男人桶 | 国产亚洲视频中文字幕97精品 | 精品成在人线av无码免费看 | 牲欲强的熟妇农村老妇女 | 精品人妻人人做人人爽夜夜爽 | 草草网站影院白丝内射 | 无码播放一区二区三区 | 亚洲中文无码av永久不收费 | 乱人伦人妻中文字幕无码久久网 | 少妇无码一区二区二三区 | 久久人人97超碰a片精品 | 国内揄拍国内精品少妇国语 | 亚洲人成影院在线观看 | 久久国产劲爆∧v内射 | 国产成人久久精品流白浆 | 97精品国产97久久久久久免费 | 高清无码午夜福利视频 | 久久婷婷五月综合色国产香蕉 | 1000部夫妻午夜免费 | 国产成人无码午夜视频在线观看 | 国产内射老熟女aaaa | 一二三四在线观看免费视频 | 欧美黑人巨大xxxxx | 久久综合久久自在自线精品自 | 天堂一区人妻无码 | 中国女人内谢69xxxx | 亚洲无人区一区二区三区 | 六月丁香婷婷色狠狠久久 | 桃花色综合影院 | 99久久人妻精品免费一区 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 131美女爱做视频 | 久久熟妇人妻午夜寂寞影院 | 精品成在人线av无码免费看 | 中国女人内谢69xxxxxa片 | 无码人妻av免费一区二区三区 | 激情内射亚州一区二区三区爱妻 | 亚洲gv猛男gv无码男同 | 人人爽人人澡人人人妻 | 玩弄中年熟妇正在播放 | 亚洲无人区午夜福利码高清完整版 | 娇妻被黑人粗大高潮白浆 | 国产av一区二区精品久久凹凸 | 桃花色综合影院 | 欧美 亚洲 国产 另类 | 亚洲欧美日韩成人高清在线一区 | 亚洲成av人片在线观看无码不卡 | 久久99精品国产麻豆蜜芽 | 欧洲vodafone精品性 | 夜精品a片一区二区三区无码白浆 | 国产精华av午夜在线观看 | 欧美精品一区二区精品久久 | 欧美一区二区三区视频在线观看 | 熟女俱乐部五十路六十路av | 成 人 网 站国产免费观看 | 无码av岛国片在线播放 | 性色欲网站人妻丰满中文久久不卡 | 国产又爽又猛又粗的视频a片 | 久9re热视频这里只有精品 | 亚洲国产精品无码一区二区三区 | 亚洲乱码国产乱码精品精 | аⅴ资源天堂资源库在线 | 樱花草在线播放免费中文 | 亚洲综合久久一区二区 | 国产精品久久久一区二区三区 | 免费观看的无遮挡av | 美女张开腿让人桶 | 内射老妇bbwx0c0ck | 久久97精品久久久久久久不卡 | 久精品国产欧美亚洲色aⅴ大片 | 欧美xxxx黑人又粗又长 | 精品国偷自产在线视频 | 久久综合给久久狠狠97色 | 久青草影院在线观看国产 | 成人女人看片免费视频放人 | 久久人人爽人人人人片 | 男人的天堂av网站 | 无码人中文字幕 | 少妇性荡欲午夜性开放视频剧场 | 成 人 网 站国产免费观看 | 风流少妇按摩来高潮 | 男女性色大片免费网站 | 久久国产精品萌白酱免费 | 欧美刺激性大交 | 精品一二三区久久aaa片 | aⅴ在线视频男人的天堂 | 亚洲欧洲日本无在线码 | 久久精品国产99精品亚洲 | 网友自拍区视频精品 | 国产精品无码久久av | 亚洲中文字幕在线无码一区二区 | 波多野结衣av一区二区全免费观看 | 日本又色又爽又黄的a片18禁 | 久久亚洲精品成人无码 | 免费人成在线观看网站 | 人妻夜夜爽天天爽三区 | 亚洲经典千人经典日产 | 少妇无码av无码专区在线观看 | 久久久久国色av免费观看性色 | 少女韩国电视剧在线观看完整 | 97色伦图片97综合影院 | 日本一卡二卡不卡视频查询 | 亚洲国产午夜精品理论片 | 精品夜夜澡人妻无码av蜜桃 | 国内精品一区二区三区不卡 | 女人被男人躁得好爽免费视频 | 日欧一片内射va在线影院 | 国内精品九九久久久精品 | 一本无码人妻在中文字幕免费 | 影音先锋中文字幕无码 | 亚洲综合伊人久久大杳蕉 | 麻豆果冻传媒2021精品传媒一区下载 | 亚洲一区av无码专区在线观看 | 少妇无套内谢久久久久 | 四虎永久在线精品免费网址 | 日本精品少妇一区二区三区 | 97精品人妻一区二区三区香蕉 | 捆绑白丝粉色jk震动捧喷白浆 | 日韩视频 中文字幕 视频一区 | 国产成人人人97超碰超爽8 | 亚洲欧美国产精品久久 | √天堂资源地址中文在线 | 天堂无码人妻精品一区二区三区 | 成人精品视频一区二区三区尤物 | √天堂资源地址中文在线 | 亚洲 a v无 码免 费 成 人 a v | 久久99精品久久久久久动态图 | 亚洲 欧美 激情 小说 另类 | 日本乱偷人妻中文字幕 | av人摸人人人澡人人超碰下载 | 人妻中文无码久热丝袜 | 麻豆国产人妻欲求不满谁演的 | 亚洲s码欧洲m码国产av | 欧美成人家庭影院 | 中文字幕色婷婷在线视频 | 天天躁日日躁狠狠躁免费麻豆 | 亚洲精品国产精品乱码不卡 | 日韩欧美群交p片內射中文 | 午夜理论片yy44880影院 | 丁香啪啪综合成人亚洲 | 久久国产36精品色熟妇 | 中文字幕亚洲情99在线 | 久久综合久久自在自线精品自 | 未满小14洗澡无码视频网站 | 麻豆国产丝袜白领秘书在线观看 | 欧洲极品少妇 | 51国偷自产一区二区三区 | 99riav国产精品视频 | 中国女人内谢69xxxx | 2019午夜福利不卡片在线 | 成 人 免费观看网站 | 美女毛片一区二区三区四区 | 久久国产自偷自偷免费一区调 | 国产精品99久久精品爆乳 | 国产人妻人伦精品1国产丝袜 | 亚洲国产精品无码一区二区三区 | 免费无码一区二区三区蜜桃大 | 婷婷丁香六月激情综合啪 | 玩弄少妇高潮ⅹxxxyw | 夜夜影院未满十八勿进 | 亚洲小说春色综合另类 | 亚洲精品综合五月久久小说 | 精品久久久久久人妻无码中文字幕 | 国产麻豆精品一区二区三区v视界 | 亚洲成av人片在线观看无码不卡 | 中文字幕无码av波多野吉衣 | 色一情一乱一伦 | 99国产欧美久久久精品 | 免费无码肉片在线观看 | 久久 国产 尿 小便 嘘嘘 | 99久久久无码国产aaa精品 | 亚洲乱码中文字幕在线 | 狠狠cao日日穞夜夜穞av | 一个人免费观看的www视频 | 久久久久亚洲精品中文字幕 | 国产美女精品一区二区三区 | 国产精品二区一区二区aⅴ污介绍 | 永久免费观看美女裸体的网站 | 精品人妻中文字幕有码在线 | 国产在线精品一区二区三区直播 | 亚洲日本在线电影 | 亚洲呦女专区 | 大乳丰满人妻中文字幕日本 | 国产明星裸体无码xxxx视频 | 亚洲呦女专区 | 300部国产真实乱 | 欧美性黑人极品hd | 国产另类ts人妖一区二区 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 国产免费久久精品国产传媒 | 一本大道久久东京热无码av | 内射老妇bbwx0c0ck | 久热国产vs视频在线观看 | 亚洲呦女专区 | 学生妹亚洲一区二区 | 中文字幕av日韩精品一区二区 | 曰韩少妇内射免费播放 | 中文字幕无码日韩欧毛 | 日韩成人一区二区三区在线观看 | 又粗又大又硬又长又爽 | 亚洲一区二区三区含羞草 | 亚洲大尺度无码无码专区 | 亚洲精品综合五月久久小说 | 国产精品二区一区二区aⅴ污介绍 | 日韩精品成人一区二区三区 | 亚洲成色在线综合网站 | 一本色道久久综合狠狠躁 | 精品一区二区三区波多野结衣 | 少妇性l交大片 | 九月婷婷人人澡人人添人人爽 | 黑人巨大精品欧美一区二区 | 国产成人精品久久亚洲高清不卡 | 国精品人妻无码一区二区三区蜜柚 | 国产 浪潮av性色四虎 | 午夜精品一区二区三区的区别 | 精品午夜福利在线观看 | a国产一区二区免费入口 | 亚洲gv猛男gv无码男同 | 亚洲精品中文字幕乱码 | 精品无人区无码乱码毛片国产 | 无码人中文字幕 | 97人妻精品一区二区三区 | 久久 国产 尿 小便 嘘嘘 | 蜜桃av抽搐高潮一区二区 | 黑人玩弄人妻中文在线 | 牲交欧美兽交欧美 | 亚洲精品欧美二区三区中文字幕 | 亚洲人成无码网www | 好男人社区资源 | 特大黑人娇小亚洲女 | 亚洲日本va中文字幕 | 天天躁日日躁狠狠躁免费麻豆 | 成熟女人特级毛片www免费 | 熟妇人妻无乱码中文字幕 | 又粗又大又硬毛片免费看 | 免费播放一区二区三区 | 国产av无码专区亚洲a∨毛片 | 最近的中文字幕在线看视频 | 在线观看国产午夜福利片 | 激情五月综合色婷婷一区二区 | 中文字幕乱码中文乱码51精品 | 欧美日韩在线亚洲综合国产人 | 十八禁真人啪啪免费网站 | 日韩精品乱码av一区二区 | 午夜无码人妻av大片色欲 | 18黄暴禁片在线观看 | 国产肉丝袜在线观看 | 午夜福利试看120秒体验区 | 国产肉丝袜在线观看 | 亚洲国产精品无码久久久久高潮 | 97se亚洲精品一区 | 亚洲欧美日韩综合久久久 | 国产av一区二区三区最新精品 | 亚洲熟妇色xxxxx欧美老妇y | 久久天天躁狠狠躁夜夜免费观看 | 中文字幕乱码人妻二区三区 | 色五月丁香五月综合五月 | 任你躁在线精品免费 | 伦伦影院午夜理论片 | 成在人线av无码免观看麻豆 | 日本www一道久久久免费榴莲 | 白嫩日本少妇做爰 | 国产99久久精品一区二区 | 欧美激情内射喷水高潮 | 国产乱人偷精品人妻a片 | 色综合久久久久综合一本到桃花网 | 免费无码的av片在线观看 | 国内精品一区二区三区不卡 | 欧美人与善在线com | 骚片av蜜桃精品一区 | 日本高清一区免费中文视频 | 蜜桃视频插满18在线观看 | 无码国产激情在线观看 | 国产亚洲精品久久久久久 | 夜夜夜高潮夜夜爽夜夜爰爰 | 国产真人无遮挡作爱免费视频 | 国产成人无码av在线影院 | 久久精品成人欧美大片 | 免费国产黄网站在线观看 | 国产精品va在线播放 | 久久视频在线观看精品 | 亚洲国产综合无码一区 | 97精品国产97久久久久久免费 | 内射老妇bbwx0c0ck | 亚洲国产成人a精品不卡在线 | 久久无码中文字幕免费影院蜜桃 | 无码帝国www无码专区色综合 | 丰满人妻精品国产99aⅴ | 夜夜影院未满十八勿进 | 波多野结衣aⅴ在线 | 大肉大捧一进一出好爽视频 | 欧美精品一区二区精品久久 | 7777奇米四色成人眼影 | 亚欧洲精品在线视频免费观看 | 丰满人妻一区二区三区免费视频 | 亚洲国产av美女网站 | 玩弄中年熟妇正在播放 | 人人爽人人澡人人高潮 | 性欧美熟妇videofreesex | 亚洲成a人一区二区三区 | 中文字幕人妻无码一区二区三区 | 亚洲国产精品无码一区二区三区 | 国产精品久久久久无码av色戒 | 亚洲熟妇色xxxxx欧美老妇 | 亚洲精品欧美二区三区中文字幕 | 国产乱人无码伦av在线a | 人妻尝试又大又粗久久 | 国产精品爱久久久久久久 | 日日躁夜夜躁狠狠躁 | 377p欧洲日本亚洲大胆 | 少妇的肉体aa片免费 | 欧美大屁股xxxxhd黑色 | 97资源共享在线视频 | 老熟妇仑乱视频一区二区 | 国产av久久久久精东av | 亚洲娇小与黑人巨大交 | 日本熟妇大屁股人妻 | 国产内射老熟女aaaa | 欧美精品一区二区精品久久 | aⅴ在线视频男人的天堂 | 成人欧美一区二区三区黑人 | 乱码午夜-极国产极内射 | 色综合久久网 | 日本成熟视频免费视频 | 色一情一乱一伦一区二区三欧美 | 熟妇人妻激情偷爽文 | 欧美黑人乱大交 | 亚洲国产精品美女久久久久 | 动漫av网站免费观看 | 白嫩日本少妇做爰 | 久久99精品久久久久久动态图 | 熟女俱乐部五十路六十路av | 午夜嘿嘿嘿影院 | 成人免费视频视频在线观看 免费 | 亚洲成a人片在线观看无码 | 少妇人妻大乳在线视频 | 久久综合久久自在自线精品自 | 国产熟妇高潮叫床视频播放 | 国产香蕉97碰碰久久人人 | 久久综合激激的五月天 | 伊人久久婷婷五月综合97色 | 西西人体www44rt大胆高清 | 久久zyz资源站无码中文动漫 | 成在人线av无码免观看麻豆 | 日本丰满护士爆乳xxxx | 无码人妻精品一区二区三区下载 | 十八禁视频网站在线观看 | av无码久久久久不卡免费网站 | 国产av无码专区亚洲a∨毛片 | 欧美喷潮久久久xxxxx | 欧美人与牲动交xxxx | 国产精品无码成人午夜电影 | 欧美 日韩 亚洲 在线 | 国产免费观看黄av片 | 好男人www社区 | 欧美猛少妇色xxxxx | 久久久国产一区二区三区 | 亚洲成a人一区二区三区 | 精品成人av一区二区三区 | 国产偷抇久久精品a片69 | 99久久人妻精品免费二区 | 婷婷色婷婷开心五月四房播播 | 大地资源中文第3页 | 人妻插b视频一区二区三区 | 色一情一乱一伦一区二区三欧美 | a国产一区二区免费入口 | 99久久久无码国产精品免费 | 色一情一乱一伦一区二区三欧美 | 中文精品无码中文字幕无码专区 | 六月丁香婷婷色狠狠久久 | 青青草原综合久久大伊人精品 | 亚洲国产精品一区二区第一页 | 色窝窝无码一区二区三区色欲 | 无码av中文字幕免费放 | 亚洲精品无码人妻无码 | 少妇无套内谢久久久久 | 成人免费无码大片a毛片 | 东京热一精品无码av | 久久久国产一区二区三区 | 亚洲欧美中文字幕5发布 | 人妻插b视频一区二区三区 | 精品一区二区不卡无码av | 日本www一道久久久免费榴莲 | 九月婷婷人人澡人人添人人爽 | 国产午夜手机精彩视频 | 国产精品第一区揄拍无码 | 噜噜噜亚洲色成人网站 | 日日夜夜撸啊撸 | 男人的天堂2018无码 | 乌克兰少妇性做爰 | 久久久国产一区二区三区 | 永久免费观看国产裸体美女 | 亚洲a无码综合a国产av中文 | 欧美freesex黑人又粗又大 | 国产精品99久久精品爆乳 | 人妻少妇精品无码专区动漫 | 中文字幕无码免费久久99 | 人妻无码αv中文字幕久久琪琪布 | 久久天天躁夜夜躁狠狠 | 国产真人无遮挡作爱免费视频 | 老子影院午夜精品无码 | 丰满少妇人妻久久久久久 | 内射后入在线观看一区 | 夜精品a片一区二区三区无码白浆 | 欧美 日韩 人妻 高清 中文 | 亚洲春色在线视频 | 青青草原综合久久大伊人精品 | 性做久久久久久久免费看 | 熟妇人妻无乱码中文字幕 | 亚洲成色www久久网站 | 成年美女黄网站色大免费视频 | 一个人看的www免费视频在线观看 | 亚洲一区二区三区播放 | 国产午夜福利100集发布 | 久久精品国产一区二区三区 | 免费看少妇作爱视频 | 国产成人亚洲综合无码 | 欧美日韩视频无码一区二区三 | 久久精品国产一区二区三区肥胖 | 久久99精品国产麻豆 | 午夜时刻免费入口 | 亚洲 a v无 码免 费 成 人 a v | 99视频精品全部免费免费观看 | 国产人妻精品一区二区三区不卡 | 人妻尝试又大又粗久久 | 亚洲成熟女人毛毛耸耸多 | а√天堂www在线天堂小说 | 日韩精品无码免费一区二区三区 | 中文字幕人妻丝袜二区 | 亚洲精品国产第一综合99久久 | 日韩欧美成人免费观看 | 成人免费无码大片a毛片 | 无码av最新清无码专区吞精 | 四虎国产精品一区二区 | 亚洲熟悉妇女xxx妇女av | 久久久久av无码免费网 | 动漫av网站免费观看 | 国产又爽又黄又刺激的视频 | 自拍偷自拍亚洲精品被多人伦好爽 | 欧美肥老太牲交大战 | 国内揄拍国内精品少妇国语 | 国产福利视频一区二区 | 麻豆果冻传媒2021精品传媒一区下载 | 亚洲精品国偷拍自产在线麻豆 | 欧美国产亚洲日韩在线二区 | 亚洲精品中文字幕久久久久 | 东北女人啪啪对白 | 人妻无码αv中文字幕久久琪琪布 | 免费网站看v片在线18禁无码 | 精品无人区无码乱码毛片国产 | 玩弄人妻少妇500系列视频 | 成人无码精品一区二区三区 | 天天摸天天透天天添 | 国内丰满熟女出轨videos | 亚洲精品久久久久久久久久久 | 成人精品视频一区二区三区尤物 | 精品夜夜澡人妻无码av蜜桃 | av无码电影一区二区三区 | 亚洲经典千人经典日产 | 日本又色又爽又黄的a片18禁 | 久久久久国色av免费观看性色 | 欧美成人家庭影院 | 欧美人与物videos另类 | 国产区女主播在线观看 | 免费播放一区二区三区 | 婷婷综合久久中文字幕蜜桃三电影 | 蜜桃臀无码内射一区二区三区 | 午夜性刺激在线视频免费 | 伊在人天堂亚洲香蕉精品区 | 国产无遮挡又黄又爽免费视频 | 综合网日日天干夜夜久久 | 国产成人无码一二三区视频 | 国产午夜无码精品免费看 | 乱中年女人伦av三区 | 国产熟妇另类久久久久 | 2020久久香蕉国产线看观看 | 十八禁真人啪啪免费网站 | 国产三级久久久精品麻豆三级 | 最新版天堂资源中文官网 | 中文字幕乱码人妻二区三区 | 精品无人国产偷自产在线 | 天天躁夜夜躁狠狠是什么心态 | 人妻插b视频一区二区三区 | 精品人妻av区 | 18黄暴禁片在线观看 | 国产av剧情md精品麻豆 | 人妻aⅴ无码一区二区三区 | 青草青草久热国产精品 | 两性色午夜免费视频 | 精品国产一区二区三区av 性色 | 一本无码人妻在中文字幕免费 | 蜜桃视频插满18在线观看 | 中文字幕乱码人妻二区三区 | www国产亚洲精品久久久日本 | 丰满妇女强制高潮18xxxx | 日本高清一区免费中文视频 | 亚洲成在人网站无码天堂 | 色综合久久久久综合一本到桃花网 | 国产无套粉嫩白浆在线 | 正在播放东北夫妻内射 | 偷窥日本少妇撒尿chinese | 漂亮人妻洗澡被公强 日日躁 | 精品偷自拍另类在线观看 | 午夜性刺激在线视频免费 | 中文字幕 亚洲精品 第1页 | 久久久久se色偷偷亚洲精品av | 国产无av码在线观看 | 欧美freesex黑人又粗又大 | 亚洲经典千人经典日产 | 精品国产成人一区二区三区 | 日本一区二区三区免费高清 | 中文字幕乱码中文乱码51精品 | 成年女人永久免费看片 | 女高中生第一次破苞av | 欧美兽交xxxx×视频 | 中文字幕人妻丝袜二区 | 日本免费一区二区三区最新 | 乱中年女人伦av三区 | a片在线免费观看 | 国产后入清纯学生妹 | 人人妻人人澡人人爽欧美一区 | 又大又紧又粉嫩18p少妇 | 亚洲一区二区三区播放 | 中文字幕无码乱人伦 | 在线 国产 欧美 亚洲 天堂 | 熟女俱乐部五十路六十路av | 欧洲美熟女乱又伦 | 久久久久免费精品国产 | 蜜桃无码一区二区三区 | 婷婷色婷婷开心五月四房播播 | 天天摸天天碰天天添 | 亚洲精品久久久久久一区二区 | 亚洲日韩精品欧美一区二区 | 美女张开腿让人桶 | 日本饥渴人妻欲求不满 | 人人妻在人人 | 狂野欧美性猛xxxx乱大交 | 又粗又大又硬毛片免费看 | 两性色午夜免费视频 | 波多野结衣高清一区二区三区 | 日日麻批免费40分钟无码 | 一个人看的www免费视频在线观看 | 亚洲精品一区三区三区在线观看 | 国产极品视觉盛宴 | 欧美黑人性暴力猛交喷水 | 欧美 亚洲 国产 另类 | 精品人妻人人做人人爽 | 国产精品亚洲lv粉色 | 午夜熟女插插xx免费视频 | 18精品久久久无码午夜福利 | 久久亚洲中文字幕无码 | 九月婷婷人人澡人人添人人爽 | 学生妹亚洲一区二区 | 亚洲爆乳无码专区 | 亚洲另类伦春色综合小说 | 精品欧洲av无码一区二区三区 | 亚洲一区二区三区 | 超碰97人人射妻 | 内射爽无广熟女亚洲 | 天天拍夜夜添久久精品大 | 色情久久久av熟女人妻网站 | 亚洲 a v无 码免 费 成 人 a v | 中文字幕无码乱人伦 | 纯爱无遮挡h肉动漫在线播放 | 免费无码av一区二区 | 日日天日日夜日日摸 | 久久综合给合久久狠狠狠97色 | 亚洲爆乳无码专区 | 强奷人妻日本中文字幕 | 亚洲国产精品毛片av不卡在线 | 久久国产劲爆∧v内射 | 人人妻人人澡人人爽人人精品 | 久久久国产一区二区三区 | a片在线免费观看 | 国产乡下妇女做爰 | 欧美野外疯狂做受xxxx高潮 | 秋霞成人午夜鲁丝一区二区三区 | 亚洲精品久久久久久一区二区 | 黑人玩弄人妻中文在线 | 天天躁日日躁狠狠躁免费麻豆 | 2019午夜福利不卡片在线 | 爱做久久久久久 | 人人妻人人澡人人爽欧美精品 | 国语自产偷拍精品视频偷 | 日日橹狠狠爱欧美视频 | 色噜噜亚洲男人的天堂 | 久久国产精品_国产精品 | 国产成人精品视频ⅴa片软件竹菊 | 国产激情一区二区三区 | 搡女人真爽免费视频大全 | 亚洲精品国产第一综合99久久 | 夫妻免费无码v看片 | 亚洲の无码国产の无码影院 | 欧美日韩综合一区二区三区 | 亚洲精品无码人妻无码 | 色婷婷av一区二区三区之红樱桃 | 成人三级无码视频在线观看 | 高潮毛片无遮挡高清免费 | 人妻与老人中文字幕 | 国产精品资源一区二区 | 国产午夜视频在线观看 | 国产欧美精品一区二区三区 | 学生妹亚洲一区二区 | 国产亲子乱弄免费视频 | 99久久精品午夜一区二区 | 亚洲精品成a人在线观看 | 国产精品人人爽人人做我的可爱 | 日本va欧美va欧美va精品 | 无码一区二区三区在线观看 | 人妻互换免费中文字幕 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国精产品一区二区三区 | 黄网在线观看免费网站 | 性欧美熟妇videofreesex | 国产成人精品必看 | 亚洲国产精华液网站w | 国产猛烈高潮尖叫视频免费 | 99精品国产综合久久久久五月天 | 国产又粗又硬又大爽黄老大爷视 | 天天躁夜夜躁狠狠是什么心态 | 欧美黑人乱大交 | 国产莉萝无码av在线播放 | 欧美人与物videos另类 | 亚洲精品综合五月久久小说 | 国产人成高清在线视频99最全资源 | 97久久国产亚洲精品超碰热 | 中文字幕无码日韩欧毛 | 日韩精品无码免费一区二区三区 | 成人毛片一区二区 | √天堂资源地址中文在线 | 国产乡下妇女做爰 | 精品国产一区av天美传媒 | 日本熟妇乱子伦xxxx | 国产精品无码一区二区桃花视频 | 久久亚洲a片com人成 | 久久午夜无码鲁丝片午夜精品 | www国产亚洲精品久久久日本 | 人人妻人人澡人人爽欧美一区九九 | 国产精品人妻一区二区三区四 | 人人爽人人澡人人人妻 | 亚洲日韩精品欧美一区二区 | 午夜嘿嘿嘿影院 | 国产成人无码a区在线观看视频app | 久在线观看福利视频 | 成人试看120秒体验区 | 日本高清一区免费中文视频 | 久久99精品国产麻豆蜜芽 | 国产九九九九九九九a片 | 精品人妻人人做人人爽夜夜爽 | 色偷偷人人澡人人爽人人模 | 国产av无码专区亚洲awww | 夜先锋av资源网站 | 在线观看国产一区二区三区 | 一区二区三区乱码在线 | 欧洲 | 国产成人精品久久亚洲高清不卡 | 欧美熟妇另类久久久久久多毛 | 午夜性刺激在线视频免费 | 日本大香伊一区二区三区 | 综合激情五月综合激情五月激情1 | 欧美人妻一区二区三区 | 日韩亚洲欧美中文高清在线 | 少妇激情av一区二区 | 国产 浪潮av性色四虎 | 成人免费视频在线观看 | 久久人妻内射无码一区三区 | 强辱丰满人妻hd中文字幕 | 无码播放一区二区三区 | 亚洲性无码av中文字幕 | 久久综合九色综合97网 | 日本爽爽爽爽爽爽在线观看免 | 丰满护士巨好爽好大乳 | 国产真人无遮挡作爱免费视频 | 午夜精品久久久久久久久 | 亚洲精品久久久久avwww潮水 | 男人的天堂2018无码 | 高潮毛片无遮挡高清免费视频 | 四虎4hu永久免费 | 成人性做爰aaa片免费看不忠 | 少妇高潮一区二区三区99 | 人人澡人摸人人添 | 精品无人区无码乱码毛片国产 | 午夜理论片yy44880影院 | 亚洲无人区一区二区三区 | 沈阳熟女露脸对白视频 | 最新国产乱人伦偷精品免费网站 | 国产精品久久久久影院嫩草 | 久久国产精品_国产精品 | 桃花色综合影院 | 在线播放亚洲第一字幕 | 51国偷自产一区二区三区 | 精品久久久久香蕉网 | 亚洲人成影院在线无码按摩店 | 狂野欧美激情性xxxx | 国产亚洲tv在线观看 | 国产色精品久久人妻 | 国产亚洲人成在线播放 | 亚洲欧美色中文字幕在线 | 色爱情人网站 | 久久亚洲精品中文字幕无男同 | 丰满少妇女裸体bbw | 国产情侣作爱视频免费观看 | 综合激情五月综合激情五月激情1 | 青春草在线视频免费观看 | 中文字幕av无码一区二区三区电影 | 国产午夜无码视频在线观看 | 99久久精品无码一区二区毛片 | 久久亚洲国产成人精品性色 | 亚洲の无码国产の无码步美 | 成人毛片一区二区 | 亚洲欧洲日本无在线码 | 无码精品国产va在线观看dvd | 伊人久久大香线蕉午夜 | 午夜性刺激在线视频免费 | 又黄又爽又色的视频 | 国产又爽又黄又刺激的视频 | 扒开双腿吃奶呻吟做受视频 | 中文字幕无码av激情不卡 | 曰本女人与公拘交酡免费视频 | 无码任你躁久久久久久久 | 日韩精品a片一区二区三区妖精 | av无码不卡在线观看免费 | 成人试看120秒体验区 | 在线播放亚洲第一字幕 | 18禁止看的免费污网站 | 天天爽夜夜爽夜夜爽 | 人人妻人人澡人人爽精品欧美 | 国产成人无码av片在线观看不卡 | 国精品人妻无码一区二区三区蜜柚 | 亚洲综合无码一区二区三区 | 国产亚洲日韩欧美另类第八页 | 亚欧洲精品在线视频免费观看 | 精品国产av色一区二区深夜久久 | 熟女体下毛毛黑森林 | 色噜噜亚洲男人的天堂 | 亚洲成a人片在线观看日本 | 国产精品沙发午睡系列 | 51国偷自产一区二区三区 | 曰韩少妇内射免费播放 | 久久久精品欧美一区二区免费 | 国产亚洲精品久久久闺蜜 | 国产精品沙发午睡系列 | 国产va免费精品观看 | 在线亚洲高清揄拍自拍一品区 | 亚洲成a人一区二区三区 | 在教室伦流澡到高潮hnp视频 | 无码精品国产va在线观看dvd | 亚洲 日韩 欧美 成人 在线观看 | 国内少妇偷人精品视频免费 | 国产婷婷色一区二区三区在线 | 亚洲欧美色中文字幕在线 | 欧美兽交xxxx×视频 | 国产亚洲欧美日韩亚洲中文色 | 国产精品办公室沙发 | 亚洲欧美日韩国产精品一区二区 | 精品无码一区二区三区的天堂 | 日韩精品成人一区二区三区 | 欧美一区二区三区 | 精品国产aⅴ无码一区二区 | 亚洲第一网站男人都懂 | 无码av中文字幕免费放 | 国产成人精品视频ⅴa片软件竹菊 | 国产精品美女久久久久av爽李琼 | 18无码粉嫩小泬无套在线观看 | 人妻互换免费中文字幕 | 婷婷丁香五月天综合东京热 | 日本丰满熟妇videos | 精品欧洲av无码一区二区三区 | 综合网日日天干夜夜久久 | 日韩人妻少妇一区二区三区 | 婷婷色婷婷开心五月四房播播 | 中文字幕无码视频专区 | 亚洲色欲久久久综合网东京热 | 国产精品va在线观看无码 | 国产97在线 | 亚洲 | 亚洲日韩中文字幕在线播放 | 又大又硬又爽免费视频 | 全黄性性激高免费视频 | 99久久精品国产一区二区蜜芽 | 国产无套粉嫩白浆在线 | 初尝人妻少妇中文字幕 | 国产精品永久免费视频 | 1000部夫妻午夜免费 | aⅴ在线视频男人的天堂 | 久久国产36精品色熟妇 | 久久午夜无码鲁丝片午夜精品 | 亚洲欧洲日本综合aⅴ在线 | 国产av一区二区三区最新精品 | 欧美日本精品一区二区三区 | 麻豆蜜桃av蜜臀av色欲av | 乱码av麻豆丝袜熟女系列 | 国色天香社区在线视频 | 人妻尝试又大又粗久久 | 思思久久99热只有频精品66 | 亚洲区小说区激情区图片区 | 性色av无码免费一区二区三区 | 东京一本一道一二三区 | 乌克兰少妇性做爰 | 国产疯狂伦交大片 | 色诱久久久久综合网ywww | 日本精品久久久久中文字幕 | 在线播放亚洲第一字幕 | 久久天天躁狠狠躁夜夜免费观看 | 亚洲精品午夜国产va久久成人 | 欧美精品一区二区精品久久 | 中文字幕日韩精品一区二区三区 | 大胆欧美熟妇xx | 亚洲毛片av日韩av无码 | 小sao货水好多真紧h无码视频 | 亚洲精品中文字幕久久久久 | av无码不卡在线观看免费 | 少妇人妻大乳在线视频 | 亚洲区欧美区综合区自拍区 | 国产97在线 | 亚洲 | 亚洲欧美日韩综合久久久 | 精品久久久无码人妻字幂 | 天天拍夜夜添久久精品 | 波多野结衣aⅴ在线 | 亚洲乱码中文字幕在线 | 国产真实伦对白全集 | 久久精品国产99精品亚洲 | 亚洲国产午夜精品理论片 | 我要看www免费看插插视频 | 日日摸夜夜摸狠狠摸婷婷 | 亚洲熟悉妇女xxx妇女av | 中文字幕无码热在线视频 | 久久精品国产一区二区三区 | 久久精品国产大片免费观看 | 久久99精品久久久久婷婷 | 中文字幕日产无线码一区 | 国产特级毛片aaaaaaa高清 | 国产亚洲日韩欧美另类第八页 | 亚洲精品成a人在线观看 | 国产成人精品优优av | 男女性色大片免费网站 | 国产无av码在线观看 | av在线亚洲欧洲日产一区二区 | 亚洲男人av香蕉爽爽爽爽 | 成人精品天堂一区二区三区 | 亚洲欧美综合区丁香五月小说 | 久久www免费人成人片 | 精品国产国产综合精品 | 国产高清av在线播放 | 无人区乱码一区二区三区 | 亚洲成av人影院在线观看 | 丰满肥臀大屁股熟妇激情视频 | 丰满岳乱妇在线观看中字无码 | 99久久精品日本一区二区免费 | 国产精品欧美成人 | 青青青手机频在线观看 | 免费网站看v片在线18禁无码 | 欧美丰满少妇xxxx性 | 鲁大师影院在线观看 | 国产乱人偷精品人妻a片 | 熟妇激情内射com | 国产亚洲精品久久久久久 | 九月婷婷人人澡人人添人人爽 | 我要看www免费看插插视频 | 国产午夜福利100集发布 | 久久综合网欧美色妞网 | 4hu四虎永久在线观看 | 亚洲色大成网站www国产 | 1000部夫妻午夜免费 | 欧美精品一区二区精品久久 | 国产一精品一av一免费 | 日本大乳高潮视频在线观看 | 亚洲 高清 成人 动漫 | 婷婷丁香六月激情综合啪 | 久久午夜无码鲁丝片午夜精品 | 国产午夜视频在线观看 | 亚洲欧美国产精品久久 | 国产在线精品一区二区三区直播 | 无套内谢的新婚少妇国语播放 | 成人三级无码视频在线观看 | 婷婷六月久久综合丁香 | 亚洲国产精品一区二区美利坚 | 久久久久久九九精品久 | 国产人妻精品午夜福利免费 | 亚洲精品国产第一综合99久久 | 国产精品亚洲专区无码不卡 | 亚洲欧美日韩国产精品一区二区 | 国产亚av手机在线观看 | 久久精品成人欧美大片 | 亚洲天堂2017无码中文 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 亚洲色在线无码国产精品不卡 | 国产精品18久久久久久麻辣 | 丁香花在线影院观看在线播放 | 亚洲一区二区三区无码久久 | 亲嘴扒胸摸屁股激烈网站 | 国产口爆吞精在线视频 | 精品无码一区二区三区的天堂 | 日日摸夜夜摸狠狠摸婷婷 | 午夜成人1000部免费视频 | 日日噜噜噜噜夜夜爽亚洲精品 | 人妻互换免费中文字幕 | 色婷婷综合中文久久一本 | 丰满肥臀大屁股熟妇激情视频 | 国内精品久久久久久中文字幕 | 亚洲欧美国产精品专区久久 | 亚洲自偷自偷在线制服 | 国产无遮挡又黄又爽又色 | 妺妺窝人体色www婷婷 | 久久无码专区国产精品s | 亚洲国产高清在线观看视频 | 亚洲男人av香蕉爽爽爽爽 | 亚洲啪av永久无码精品放毛片 | 日本精品久久久久中文字幕 | 人妻aⅴ无码一区二区三区 | 久久亚洲精品中文字幕无男同 | 欧美人与牲动交xxxx | 日韩精品一区二区av在线 | 无码一区二区三区在线观看 | 亚洲爆乳无码专区 | 黑森林福利视频导航 | 久久午夜夜伦鲁鲁片无码免费 | 久久精品中文字幕大胸 | 青青青爽视频在线观看 | 亚洲熟熟妇xxxx | 国产超碰人人爽人人做人人添 | 色婷婷av一区二区三区之红樱桃 | 久久五月精品中文字幕 | 亚洲国产综合无码一区 | 亚洲 日韩 欧美 成人 在线观看 | 中文字幕日产无线码一区 | 自拍偷自拍亚洲精品被多人伦好爽 | 伊人久久大香线蕉午夜 | 给我免费的视频在线观看 | 捆绑白丝粉色jk震动捧喷白浆 | 亚洲天堂2017无码 | 国产精品手机免费 | 东京无码熟妇人妻av在线网址 | 青草视频在线播放 | 国产真人无遮挡作爱免费视频 | 国产97人人超碰caoprom | 亚洲欧美中文字幕5发布 | 在线亚洲高清揄拍自拍一品区 | 国产麻豆精品一区二区三区v视界 | 国产亚洲tv在线观看 | 丰满人妻被黑人猛烈进入 | 国产97在线 | 亚洲 | 成人无码视频在线观看网站 | 日欧一片内射va在线影院 | 亚洲成a人一区二区三区 | 亚洲精品一区二区三区在线 | 亚洲精品国产第一综合99久久 | 欧美变态另类xxxx | 亚洲精品一区二区三区大桥未久 | 内射爽无广熟女亚洲 | 帮老师解开蕾丝奶罩吸乳网站 | 无码人中文字幕 | 精品久久久久香蕉网 | 亚洲精品综合五月久久小说 | 无码av免费一区二区三区试看 | 女人和拘做爰正片视频 | 一二三四在线观看免费视频 | 久久成人a毛片免费观看网站 | 亚洲精品www久久久 | a在线观看免费网站大全 | 国产成人精品视频ⅴa片软件竹菊 | 5858s亚洲色大成网站www | 国产精品永久免费视频 | 最新国产乱人伦偷精品免费网站 | 一区二区三区乱码在线 | 欧洲 | av人摸人人人澡人人超碰下载 | 午夜熟女插插xx免费视频 | 伊人久久大香线焦av综合影院 | 2020久久香蕉国产线看观看 | 少妇久久久久久人妻无码 | 老子影院午夜伦不卡 | 国产麻豆精品精东影业av网站 | 亚洲第一无码av无码专区 | 国产乡下妇女做爰 | 欧美乱妇无乱码大黄a片 | 日韩亚洲欧美精品综合 | 欧美猛少妇色xxxxx | 欧美精品免费观看二区 | 国产精品美女久久久网av | 日本肉体xxxx裸交 | 亚洲精品国产精品乱码视色 | 国产精品人人爽人人做我的可爱 | 成人无码精品1区2区3区免费看 | 国产无遮挡又黄又爽免费视频 | 永久免费观看国产裸体美女 | 欧美丰满熟妇xxxx性ppx人交 | √8天堂资源地址中文在线 | 色婷婷综合中文久久一本 | 国产亚洲tv在线观看 | 亚洲国产精品成人久久蜜臀 | 国产真实伦对白全集 | 精品国产一区av天美传媒 | 日本大乳高潮视频在线观看 | 捆绑白丝粉色jk震动捧喷白浆 | 精品人妻中文字幕有码在线 | 久久久国产一区二区三区 | 日韩无套无码精品 | 久久国产精品_国产精品 | 亚洲 日韩 欧美 成人 在线观看 | 国产在线无码精品电影网 | 亚洲中文字幕在线观看 | 亚洲欧美日韩综合久久久 | 99精品国产综合久久久久五月天 | 日韩欧美中文字幕在线三区 | 亚洲欧美综合区丁香五月小说 | 麻豆av传媒蜜桃天美传媒 | 亚洲中文字幕久久无码 | 全黄性性激高免费视频 | 日本免费一区二区三区最新 | 国内精品一区二区三区不卡 | 午夜嘿嘿嘿影院 | 日韩精品乱码av一区二区 | 窝窝午夜理论片影院 | 日本免费一区二区三区最新 | 精品人妻人人做人人爽夜夜爽 | 久久久久久久久蜜桃 | а√资源新版在线天堂 | 日韩av激情在线观看 | 青青草原综合久久大伊人精品 | 欧美日韩久久久精品a片 | 国内揄拍国内精品人妻 | 性色av无码免费一区二区三区 | 宝宝好涨水快流出来免费视频 | 日本护士xxxxhd少妇 | 欧美成人家庭影院 | 人妻少妇精品视频专区 | 国产成人精品优优av | 精品厕所偷拍各类美女tp嘘嘘 | 丰满人妻一区二区三区免费视频 | 67194成是人免费无码 | 人妻与老人中文字幕 | 精品无码国产一区二区三区av | 成人三级无码视频在线观看 | 婷婷综合久久中文字幕蜜桃三电影 | 久久久www成人免费毛片 | 国产一区二区三区精品视频 | 亚洲 欧美 激情 小说 另类 | 国产精品美女久久久 | 性做久久久久久久免费看 | 老熟女乱子伦 | 久久久精品人妻久久影视 | 亚洲色欲久久久综合网东京热 | 天下第一社区视频www日本 | 亚洲国产欧美日韩精品一区二区三区 | 欧美激情一区二区三区成人 | 国产真实伦对白全集 | 久久亚洲精品成人无码 | 奇米影视888欧美在线观看 | 国产亚洲人成在线播放 | 偷窥日本少妇撒尿chinese | 久久zyz资源站无码中文动漫 | 国产精品久免费的黄网站 | 亚洲国产精品无码久久久久高潮 | 亚洲の无码国产の无码步美 | 大乳丰满人妻中文字幕日本 | 欧美日韩精品 | 一个人看的www免费视频在线观看 | 亚洲午夜久久久影院 | 成人无码精品1区2区3区免费看 | 少妇无套内谢久久久久 | 精品日本一区二区三区在线观看 | 东京热无码av男人的天堂 | 国产精品-区区久久久狼 | 久久精品中文闷骚内射 | 亚洲精品国产品国语在线观看 | 国产美女极度色诱视频www | 中文字幕乱码人妻二区三区 | 扒开双腿疯狂进出爽爽爽视频 | 丰满少妇高潮惨叫视频 | 少妇久久久久久人妻无码 | 一本久久伊人热热精品中文字幕 | 国产一区二区三区四区五区加勒比 | 一个人免费观看的www视频 | 撕开奶罩揉吮奶头视频 | 久久午夜夜伦鲁鲁片无码免费 | 成人亚洲精品久久久久 | 人人澡人人透人人爽 | 久精品国产欧美亚洲色aⅴ大片 | 爆乳一区二区三区无码 | 少妇高潮喷潮久久久影院 | 高潮毛片无遮挡高清免费视频 | 88国产精品欧美一区二区三区 | 中文字幕无码免费久久99 | 精品久久久无码中文字幕 | 国产在线精品一区二区三区直播 | 免费看男女做好爽好硬视频 | 精品人妻人人做人人爽 | 日本一卡二卡不卡视频查询 | 国产激情无码一区二区 | 性做久久久久久久免费看 | 国产精品高潮呻吟av久久 | 亚洲日本va午夜在线电影 | 久久久久久久女国产乱让韩 | 中文字幕日产无线码一区 | 国产明星裸体无码xxxx视频 | 国产精品久久久久7777 | 久久精品人妻少妇一区二区三区 | 免费播放一区二区三区 | 精品国产一区av天美传媒 | 国产三级精品三级男人的天堂 | 国产精品亚洲专区无码不卡 | 亚洲成av人片天堂网无码】 | 国产97色在线 | 免 | 熟妇人妻无码xxx视频 | 国产av一区二区三区最新精品 | 国产真人无遮挡作爱免费视频 | 国语自产偷拍精品视频偷 | 中文字幕乱码亚洲无线三区 | 国语自产偷拍精品视频偷 | 性色av无码免费一区二区三区 | 无码国内精品人妻少妇 | 大肉大捧一进一出好爽视频 | 日本一区二区三区免费高清 | 成人亚洲精品久久久久软件 | 国产尤物精品视频 | 亚洲色偷偷偷综合网 | 老头边吃奶边弄进去呻吟 | 久久99精品久久久久久动态图 | 人妻尝试又大又粗久久 | 国产精品久久久久无码av色戒 | 国产人妻精品一区二区三区 | 亚洲国产精品无码一区二区三区 | 久久国产自偷自偷免费一区调 | 99久久精品无码一区二区毛片 | 精品人妻中文字幕有码在线 | аⅴ资源天堂资源库在线 | 丝袜 中出 制服 人妻 美腿 | 一本久久a久久精品vr综合 | 国产人妖乱国产精品人妖 | 成人精品天堂一区二区三区 | 小sao货水好多真紧h无码视频 | 午夜无码人妻av大片色欲 | 中文字幕色婷婷在线视频 | 国产香蕉尹人视频在线 | 成人性做爰aaa片免费看 | 中文久久乱码一区二区 | 亚洲精品久久久久久一区二区 | 在线a亚洲视频播放在线观看 | 学生妹亚洲一区二区 | 在线精品亚洲一区二区 | 亚洲中文字幕乱码av波多ji | 帮老师解开蕾丝奶罩吸乳网站 | 一本无码人妻在中文字幕免费 | 性欧美牲交xxxxx视频 | 欧美老人巨大xxxx做受 | 国产办公室秘书无码精品99 | 俺去俺来也www色官网 | 丰满人妻翻云覆雨呻吟视频 | av人摸人人人澡人人超碰下载 | 少妇厨房愉情理9仑片视频 | 巨爆乳无码视频在线观看 | 在线播放亚洲第一字幕 | 中文字幕av伊人av无码av | 色综合久久中文娱乐网 | 国产国产精品人在线视 | 国产激情无码一区二区app | 丝袜足控一区二区三区 | 亚洲精品综合一区二区三区在线 | 亚洲色偷偷偷综合网 | 99国产精品白浆在线观看免费 | 免费看男女做好爽好硬视频 | 日本饥渴人妻欲求不满 | 国产无套内射久久久国产 | 国产办公室秘书无码精品99 | 最新国产乱人伦偷精品免费网站 | 亚洲经典千人经典日产 | 67194成是人免费无码 | 成人综合网亚洲伊人 | 国产午夜亚洲精品不卡 | 少妇无码吹潮 | 日本一区二区更新不卡 | 国产人妻精品一区二区三区不卡 | 欧美熟妇另类久久久久久不卡 | 亚洲国产日韩a在线播放 | 亚洲午夜无码久久 | 日韩人妻无码一区二区三区久久99 | 丰满少妇女裸体bbw | 少妇性俱乐部纵欲狂欢电影 | 中文字幕久久久久人妻 | 国产精品美女久久久网av | 蜜桃无码一区二区三区 | 国产xxx69麻豆国语对白 | 国产成人久久精品流白浆 | 3d动漫精品啪啪一区二区中 | 国产尤物精品视频 | 一本久道久久综合狠狠爱 | 国产精品久久久久久久影院 | 乌克兰少妇xxxx做受 |