tensorflow函数总结
數值乘法mul
例如:a=3,b=3,a*b = 9
import tensorflow as tf a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) y = tf.mul(a, b) sess = tf.Session() print (sess.run(y, feed_dict={a: 3, b: 3}))- 1
- 2
- 3
- 4
- 5
- 6
結果:9.0
數值和add
例如: a = 3, b=3 ,a+b = 6
import tensorflow as tf a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) y = tf.add(a, b) sess = tf.Session() print (sess.run(y, feed_dict={a: 3, b: 3}))- 1
- 2
- 3
- 4
- 5
- 6
結果:6.0
數值減法sub
例如:a=3,b=3,a-b = 0
import tensorflow as tf a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) y = tf.sub(a, b) sess = tf.Session() print (sess.run(y, feed_dict={a: 3, b: 3}))- 1
- 2
- 3
- 4
- 5
- 6
結果: 0.0
數值除法div
例如: a=3,b=3,a/b = 1.0
import tensorflow as tf a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) y = tf.div(a, b) sess = tf.Session() print (sess.run(y, feed_dict={a: 3, b: 3}))- 1
- 2
- 3
- 4
- 5
- 6
結果: 1.0
數值取模mod
例如:a=3,b=3,a mod b = 0
import tensorflow as tf a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) y = tf.mod(a, b) sess = tf.Session() print (sess.run(y, feed_dict={a: 3, b: 3}))- 1
- 2
- 3
- 4
- 5
- 6
結果: 0.0
數值絕對值abs
例如:a=-3, abs (a) = 3
import tensorflow as tf a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) y = tf.abs(a) sess = tf.Session() print (sess.run(y, feed_dict={a: -3}))- 1
- 2
- 3
- 4
- 5
- 6
結果: 3.0
數值非負值neg
例如:a=-3, neg (a) = 3
import tensorflow as tf a = tf.placeholder(tf.float32) y = tf.neg(a) sess = tf.Session() print (sess.run(y, feed_dict={a: -3}))- 1
- 2
- 3
- 4
- 5
結果: 3.0
數值符號函數sign
例如:a=-3, neg (a) = 3
import tensorflow as tf a = tf.placeholder(tf.float32) y = tf.neg(a) sess = tf.Session() print (sess.run(y, feed_dict={a: -3}))- 1
- 2
- 3
- 4
- 5
結果: 3.0
數值符號函數sign
例如: a=-3,sign(a) = -1
import tensorflow as tf a = tf.placeholder(tf.float32) y = tf.sign(a) sess = tf.Session() print (sess.run(y, feed_dict={a: -3}))- 1
- 2
- 3
- 4
- 5
結果: -1.0
數值倒數inv
例如: a=-3,sign(a) = -1
import tensorflow as tf a = tf.placeholder(tf.float32) y = tf.sign(a) sess = tf.Session() print (sess.run(y, feed_dict={a: -3}))- 1
- 2
- 3
- 4
- 5
結果: -1.0
數值平方square
例如: a=-3,square(a) = 9
import tensorflow as tf a = tf.placeholder(tf.float32) y = tf.square(a) sess = tf.Session() print (sess.run(y, feed_dict={a: -3}))- 1
- 2
- 3
- 4
- 5
結果: 9.0
數值最近的整數round
例如: a=-3.6,round(a) = -4.0
import tensorflow as tf y = tf.round(a) sess = tf.Session() print (sess.run(y, feed_dict={a: -3.6}))- 1
- 2
- 3
- 4
結果: -4.0
例如: a=-3.3,round(a) = -3.0
import tensorflow as tf y = tf.round(a) sess = tf.Session() print (sess.run(y, feed_dict={a: -3.3}))- 1
- 2
- 3
- 4
結果:-3.0
數值平方根sqrt
例如: a=4,sqrt(a) = 2
import tensorflow as tf a = tf.placeholder(tf.float32) y = tf.sqrt(a) sess = tf.Session() print (sess.run(y, feed_dict={a: 4}))- 1
- 2
- 3
- 4
- 5
結果: 2.0
數值冪次pow
例如: a=2,b=3,pow(a,b) = 8
import tensorflow as tf a = tf.placeholder(tf.float64) b = tf.placeholder(tf.float64) y = tf.pow(a, b) sess = tf.Session() print (sess.run(y, feed_dict={a: 2, b: 3}))- 1
- 2
- 3
- 4
- 5
- 6
結果: 8.0
數值最近的整數exp
例如: a=2,exp(a) = 7.38906
import tensorflow as tf a = tf.placeholder(tf.float32) y = tf.exp(a) sess = tf.Session() print (sess.run(y, feed_dict={a: 2}))- 1
- 2
- 3
- 4
- 5
結果: 7.38906
數值取對數log
例如: a=-3.6,round(a) = -4.0
import tensorflow as tf a = tf.placeholder(tf.float32) y = tf.log(a) sess = tf.Session() print (sess.run(y, feed_dict={a: 2}))- 1
- 2
- 3
- 4
- 5
結果: 0.69314718056
數值取最大值maximum
例如: a=-3.6, b = 2,maximum(a,b)=2
import tensorflow as tf a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) y = tf.maximum(a,b) sess = tf.Session() print (sess.run(y, feed_dict={a: -3.6,b: 2}))- 1
- 2
- 3
- 4
- 5
- 6
結果: 2.0
數值最小值minimum
例如: a=2,b=3minimum(a) = 3
import tensorflow as tf a = tf.placeholder(tf.float64) b = tf.placeholder(tf.float64) y = tf.minimum(a, b) sess = tf.Session() print (sess.run(y, feed_dict={a: 2, b: 3}))- 1
- 2
- 3
- 4
- 5
- 6
結果: 2.0
數值余弦函數cos
例如: a=2,cos(a) = -0.416146836547
import tensorflow as tf a = tf.placeholder(tf.float64) y = tf.cos(a) sess = tf.Session() print (sess.run(y, feed_dict={a: 2}))- 1
- 2
- 3
- 4
- 5
結果: -0.416146836547
數值正弦函數sin
例如: a=2,sin(a) = -0.416146836547
import tensorflow as tf a = tf.placeholder(tf.float64) y = tf.sin(a) sess = tf.Session() print (sess.run(y, feed_dict={a: 2}))- 1
- 2
- 3
- 4
- 5
結果: 0.909297426826
總結
以上是生活随笔為你收集整理的tensorflow函数总结的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: matlab编程小结
- 下一篇: tensorflow学习入门笔记