Linear Algebra lecture6 note
Vector spaces and subspaces
Column space of A solving Ax=b
Null space of A
?
?
Vector space requirements v+w and cv are in the space
All combs cv+dw are in the space
向量空間對數乘和加法需要封閉
subspace of R^3:
Line( L) through zero vector? is a subspace of R^3
Plane( P) through zero vector is a subspace of R^3
then we got 2 subspaces: P and L
P∪L means all vectors in P or L or both, this is not a subspace, 原因在于對加法不封閉,加和后所得的可能既不在P上,也不在L上
P∩L means all vectors in both P and L, this is a subspace, 交點為zero
?
?
Column space of A(列空間),記作C(A)
example:
???? is a subspace of R^4, 記作 C ( A)
思考:Does Ax=b have a solution for every b? Which b’s allow this system to be solved?
回答:No. 4 equations, 3 unknowns, we can solve Ax=b exactly when b is in C( A)
接下來考慮nullspace of A: all solutions to Ax=0
now write some solutions, such as
觀察規律可總結出一般形式
Check the solution to Ax=0 always give a subspace
If Av=0 and Aw=0, then A(v+w)=0, then A(12v)=0,即對加法和數乘都封閉
?
another example:
解中不包含zero vector,故不構成space,那么它的解是什么樣的呢?
是不穿過原點的平面或直線
summary:
subspace:1、combination of several vectors
?????????????????????? 2、從方程組中通過讓x滿足特定條件
轉載于:https://www.cnblogs.com/nanocare/p/6015487.html
總結
以上是生活随笔為你收集整理的Linear Algebra lecture6 note的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 开启博客
- 下一篇: Jquery_改变背景颜色