【Python-ML】神经网络激励函数-Sigmoid
生活随笔
收集整理的這篇文章主要介紹了
【Python-ML】神经网络激励函数-Sigmoid
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
# -*- coding: utf-8 -*-
'''
Created on 2018年1月27日
@author: Jason.F
@summary: 前饋神經網絡激勵函數-Sigmoid,邏輯斯蒂函數
'''
import numpy as np
import timeif __name__ == "__main__": start = time.clock() X= np.array([[1,1.4,1.5]])w=np.array([0.0,0.2,0.4])def net_input(X,w):z=X.dot(w)return zdef logistic(z):return 1.0/(1.0+np.exp(-z))def logistic_activation(X,w):z=net_input(X, w)return logistic(z)print ('P(y=1|x)=%.3f'%logistic_activation(X, w)[0])#W:array,shape=[n_output_units,n_hidden_units+1],weight matrix for hidden layer --> output layer#note that first column (A[:][0]=1) are the bias units.W=np.array([[1.1,1.2,1.3,0.5],[0.1,0.2,0.4,0.1],[0.2,0.5,2.1,1.9]])#A:array,shape=[n_hiddern+1,n_samples],Activation of hidden layer.#note that first element (A[0][0]=1) is the bias unit.A=np.array([[1.0],[0.1],[0.3],[0.7]])#Z:array,shape=[n_output_units,n_samples],Net input of the output layer.Z=W.dot(A)y_class = np.argmax(Z,axis=0)print ('predicted class label:%d'%y_class[0])end = time.clock() print('finish all in %s' % str(end - start))
結果:
P(y=1|x)=0.707 predicted class label:2 finish all in 0.00122912770087總結
以上是生活随笔為你收集整理的【Python-ML】神经网络激励函数-Sigmoid的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【正一专栏】再见小马哥——永记你含着泪的
- 下一篇: 【Python-ML】神经网络激励函数-