【Python-ML】SKlearn库非线性决策树回归
生活随笔
收集整理的這篇文章主要介紹了
【Python-ML】SKlearn库非线性决策树回归
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
# -*- coding: utf-8 -*-
'''
Created on 2018年1月24日
@author: Jason.F
@summary: 有監督回歸學習-決策樹回歸模型,無需對數據進行特征轉換,就能處理非線性關系的數據
'''
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.tree import DecisionTreeRegressor
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics.regression import mean_squared_error, r2_score
#導入波士頓房屋數據集
df=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data',header=None,sep='\s+')
df.columns=['CRIM','ZM','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV']#單顆決策樹回歸,MSE替代熵作為節點t的不純度度量標準
X=df[['LSTAT']].values
y=df['MEDV'].values
tree = DecisionTreeRegressor (max_depth=3)
tree.fit(X,y)
sort_idx = X.flatten().argsort()
def lin_regplot(X,y,model):plt.scatter(X,y,c='blue')plt.plot(X,model.predict(X),color='red')return None
lin_regplot(X[sort_idx],y[sort_idx],tree)
plt.xlabel('%lower status of the population[LSTAT]')
plt.ylabel('Price in $1000\'s [MEDV]')
plt.show()#隨機森林,對數據集中的異常值不敏感,且無更多參數調優
#隨機森林回歸使用MSE作為單顆決策樹生成的標準,同時所有決策樹預測值的平均數作為預測目標變量的值
X=df.iloc[:,:-1].values
y=df['MEDV'].values
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.4,random_state=1)
forest = RandomForestRegressor(n_estimators=1000,criterion='mse',random_state=1,n_jobs=1)
forest.fit(X_train,y_train)
y_train_pred = forest.predict(X_train)
y_test_pred = forest.predict(X_test)
print ('MSE train:%.3f,test:%.3f'%(mean_squared_error(y_train,y_train_pred),mean_squared_error(y_test,y_test_pred)))
print ('R^2 train:%.3f,test:%.3f'%(r2_score(y_train,y_train_pred),r2_score(y_test,y_test_pred)))
#可視化效果
plt.scatter(y_train_pred,y_train_pred-y_train,c='black',marker='o',s=35,alpha=0.5,label='Training data')
plt.scatter(y_test_pred,y_test_pred-y_test,c='lightgreen',marker='s',s=35,alpha=0.7,label='Test data')
plt.xlabel('Predicted values')
plt.ylabel('Residuals')
plt.legend(loc='upper left')
plt.show()
結果:
MSE train:1.642,test:11.052 R^2 train:0.979,test:0.878總結
以上是生活随笔為你收集整理的【Python-ML】SKlearn库非线性决策树回归的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Python-ML】SKlearn库多
- 下一篇: 【Python-ML】SKlearn库原