【Python-ML】SKlearn库特征抽取-LDA
生活随笔
收集整理的這篇文章主要介紹了
【Python-ML】SKlearn库特征抽取-LDA
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
# -*- coding: utf-8 -*-
'''
Created on 2018年1月18日
@author: Jason.F
@summary: 特征抽取-LDA方法,監督、分類
'''
import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.lda import LDA
#定義繪制函數
def plot_decision_regions(X, y, classifier, resolution=0.02):# setup marker generator and color mapmarkers = ('s', 'x', 'o', '^', 'v')colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')cmap = ListedColormap(colors[:len(np.unique(y))])# plot the decision surfacex1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution))Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)Z = Z.reshape(xx1.shape)plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)plt.xlim(xx1.min(), xx1.max())plt.ylim(xx2.min(), xx2.max())# plot class samplesfor idx, cl in enumerate(np.unique(y)):plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],alpha=0.8, c=cmap(idx),marker=markers[idx], label=cl)#第一步:導入數據,對原始d維數據集做標準化處理
df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',header=None)
df_wine.columns=['Class label','Alcohol','Malic acid','Ash','Alcalinity of ash','Magnesium','Total phenols','Flavanoids','Nonflavanoid phenols','Proanthocyanins','Color intensity','Hue','OD280/OD315 of diluted wines','Proline']
print ('class labels:',np.unique(df_wine['Class label']))
#print (df_wine.head(5))
#分割訓練集合測試集
X,y=df_wine.iloc[:,1:].values,df_wine.iloc[:,0].values
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)
#特征值縮放-標準化
stdsc=StandardScaler()
X_train_std=stdsc.fit_transform(X_train)
X_test_std=stdsc.fit_transform(X_test)
#第二步:PCA降維
lda=LDA(n_components=2)#參數設置選擇前2個最能優化分類的特征子空間
lr=LogisticRegression()
X_train_lda=lda.fit_transform(X_train_std,y_train)
X_test_lda=lda.transform(X_test_std)
lr.fit(X_train_lda,y_train)
plot_decision_regions(X_train_lda,y_train,classifier=lr)
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.legend(loc='lower left')
plt.show()
plot_decision_regions(X_test_lda,y_test,classifier=lr)
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.legend(loc='lower left')
plt.show()
結果:
總結
以上是生活随笔為你收集整理的【Python-ML】SKlearn库特征抽取-LDA的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Python-ML】抽取最优化分类的特
- 下一篇: 【Python-ML】非线性映射降维-K