題意:給定幾個(gè)點(diǎn),要求覆蓋這些點(diǎn)的最小球半徑。(求到n個(gè)點(diǎn)的最大距離最小化的點(diǎn)
因?yàn)槭菃畏宓乃钥梢杂门郎剿惴?br /> 主要是我的退火算法板子精度達(dá)不到??
?
//#include<bits/stdc++.h>
#include <iostream>
#include <cmath>
#include <cstdio>
#include <stdlib.h>
#include <ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const int maxn = 1e4 + 5;
int n;
double X,Y;
struct point
{double x,y,z;
} p[maxn],pp;
double ans=1e10;
double dis(point a,point b)
{return ((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
int get(point x)
{double res=-1;int k;for(int i=1; i<=n; ++i){double m=dis(p[i],x);if(m>res)res=m,k=i;}ans=min(ans,dis(x,p[k]));return k;
}
void hc()
{double T=1,eps=1e-10;while(T>eps){//if(pp.x<=X&&pp.y<=Y&&pp.x>=0&&pp.y>=0)// {int k=get(pp);pp.x=pp.x+(p[k].x-pp.x)*T;pp.y=pp.y+(p[k].y-pp.y)*T;pp.z=pp.z+(p[k].z-pp.z)*T;// }T*=0.9996;}
}
int main()
{double X,Y;while(scanf("%d",&n)!=EOF){if(n==0)break;pp.x=pp.y=pp.z=0;for(int i=1; i<=n; ++i){cin>>p[i].x>>p[i].y>>p[i].z;pp.x+=p[i].x,pp.y+=p[i].y,pp.z+=p[i].z;}pp.x/=n;pp.y/=n;pp.z/=n;ans=1e10;hc();// printf("(%.1f,%.1f).\n",pp.x,pp.y,pp.z);printf("%.5f\n",sqrt(ans));}return 0;
}
退火沒有A掉:
?
///退火算法
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <stdlib.h>
#include <ctime>
#define mp make_pair
#define io ios::sync_with_stdio(0),cin.tie(0)
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const int maxn = 1e6 + 5;
int n, x, y;
struct point { double x, y, z; } p[maxn], now, nex, ansp;double dis(point a, point b) { return ((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) + (a.z - b.z)*(a.z - b.z)); }double f(point x)
{ //評估函數(shù)double res = 0;for (int i = 1;i <= n;i++) res = max(res, dis(x, p[i]));return res;
}
long double ans = 1e20;//最開始的能量值,初始很大就可以,不用修改
void sa()
{ans = 1e22;double T = 100; //初始溫度, (可以適當(dāng)修改,最好和給的數(shù)據(jù)最大范圍相同,或者縮小其原來0.1)double d = 0.9999; //降溫系數(shù) (可以適當(dāng)修改,影響結(jié)果的精度和循環(huán)的次數(shù),)double eps = 1e-10; //最終溫度 (要是因?yàn)榫葐栴},可以適當(dāng)減小最終溫度)double TT = 1.0; //采納新解的初始概率double dd = 0.999; //(可以適當(dāng)修改,采納新解變更的概率)(這個(gè)概率下面新解更新的時(shí)候,最好和未采納的新解更新的次數(shù)是一半一半)double res = f(now); //傳入的初始默認(rèn)解(now)下得到的評估能量值if (res < ans) ans = res, ansp = now;//ansp終解int cnt=0;while (T > eps){for (int i = -1;i <= 1;++i)for (int j = -1;j <= 1;++j)if ((now.x+T*i<=100)&&(now.x+T*i>=0)&&(now.y+T*j<=100)&&(now.y+T*j>=0)){nex.x = now.x + T * i, nex.y = now.y + T * j;//新解double tmp = f(nex);//新解下的評估能量值if (tmp < ans) ans = tmp, ansp = nex;//降溫成功,更新當(dāng)前最優(yōu)解if (tmp < res) res = tmp, now = nex;// 降溫成功,采納新解else if (TT > rand() % 10000 / 10000.0) res = tmp, now = nex;//,cout<<"======"<<endl;//沒有 降溫成功,但是以一定的概率采納新解//else cout<<"="<<endl;//用于測試,設(shè)定的采納新解的概率,是否為一半一半,可以適當(dāng)修改降溫參數(shù)dd}cnt++;T *= d; TT *= dd;}//cout<<cnt<<endl;
}
int main()
{srand(time(0));while (scanf("%d", &n)!=EOF) {if (n == 0)break;now.x = now.y = 0, now.z = 0;for (int i = 1;i <= n;++i){cin >> p[i].x >> p[i].y >> p[i].z;//scanf("%lf%lf%lf",&p[i].x,&p[i].y),now.x += p[i].x, now.y += p[i].y, now.z += p[i].z;}now.x = now.y = 55, now.z = 55;sa();//now.x /= n, now.y /= n, now.z /= n;sa();//now.x = now.y = 20, now.z = 20;sa();printf("%.5Lf\n", sqrt(ans));//cout<<ans<<endl;}return 0;
}
?
總結(jié)
以上是生活随笔為你收集整理的poj 2069 Super Star 最小求覆盖【爬山算法】的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。