ML---Simple Linear Regression
生活随笔
收集整理的這篇文章主要介紹了
ML---Simple Linear Regression
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
機器學習100天系列學習筆記 機器學習100天(中文翻譯版)機器學習100天(英文原版)
第一步:導包
#Step 1: Data Preprocessing import pandas as pd import numpy as np import matplotlib.pyplot as plt第二步:導入數據
# 28個樣本 dataset = pd.read_csv('D:/daily/機器學習100天/100-Days-Of-ML-Code-中文版本/100-Days-Of-ML-Code-master/datasets/studentscores.csv') X = dataset.iloc[ : , :-1].values Y = dataset.iloc[ : , 1 ].values第三步:劃分訓練集、測試集
#Step 3: Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)第四步:簡單線性回歸擬合
#Step 4: Fitting Simple Linear Regression Model to the training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train)第五步:預測
#Step 5: Predecting the Result Y_pred = regressor.predict(X_test)第六步:訓練集可視化
#Step 6: Visualising the Training results plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') plt.show()第七步:測試集可視化
#Step 7: Visualizing the test results plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue') plt.show()第八步:回歸性能指標
#Step 8: regression evaluation from sklearn.metrics import r2_score y_pred = regressor.predict(X_test) print(r2_score(Y_test, y_pred))打印:0.30574547147699993
R2 決定系數(擬合優度),模型越好:r2→1;模型越差:r2→0
完整代碼:
#Day 2: Simple Linear Regression 2022/4/5 #Step 1: Data Preprocessing import pandas as pd import numpy as np import matplotlib.pyplot as plt#Step 2: Importing dataset #28個樣本 dataset = pd.read_csv('D:/daily/機器學習100天/100-Days-Of-ML-Code-中文版本/100-Days-Of-ML-Code-master/datasets/studentscores.csv') X = dataset.iloc[ : , :-1].values Y = dataset.iloc[ : , 1 ].values#Step 3: Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)#Step 4: Fitting Simple Linear Regression Model to the training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train)#Step 5: Predecting the Result Y_pred = regressor.predict(X_test)#Step 6: Visualising the Training results plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') plt.show()#Step 7: Visualizing the test results plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue') plt.show()#Step 8: regression evaluation from sklearn.metrics import r2_score y_pred = regressor.predict(X_test) print(r2_score(Y_test, y_pred))總結
以上是生活随笔為你收集整理的ML---Simple Linear Regression的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: GMM_example(3)
- 下一篇: ML_Multiple Linear R