二,建立微分方程組: 根據(jù)溫度變化率,建立數(shù)學(xué)模型:X1′=a(X3?X1)+a(X2?X1){X_{1}}'=a(X_{3}-X_{1})+a(X_{2}-X_{1})X1?′=a(X3??X1?)+a(X2??X1?),a是傳導(dǎo)常數(shù) 化簡:X1′=?2aX1+aX2+aX3{X_{1}}'=-2aX_{1}+aX_{2}+aX_{3}X1?′=?2aX1?+aX2?+aX3? 假設(shè)a=1:X1′=?2X1+X2+X3{X_{1}}'=-2X_{1}+X_{2}+X_{3}X1?′=?2X1?+X2?+X3? 同理,建立方程組: {X1′=?2X1+X2+X3X2′=X1?2X2+X3X3′=X1+X2?2X3\left\{\begin{matrix}{X_{1}}'=-2X_{1}+X_{2}+X_{3}\\ {X_{2}}'=X_{1}-2X_{2}+X_{3} \\ {X_{3}}'=X_{1}+X_{2}-2X_{3}\end{matrix}\right.????X1?′=?2X1?+X2?+X3?X2?′=X1??2X2?+X3?X3?′=X1?+X2??2X3?? 用矩陣表示: [X1′X2′X3′]=[?2111?2111?2][X1X2X3]\begin{bmatrix}{X_{1}}'\\ {X_{2}}'\\ {X_{3}}'\end{bmatrix}=\begin{bmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2\end{bmatrix}\begin{bmatrix}X_{1}\\ X_{2}\\ X_{3}\end{bmatrix}???X1?′X2?′X3?′????=????211?1?21?11?2???????X1?X2?X3?????
三,求特征值λ\lambdaλ和特征向量x?\vec{x}x: ∣A?λI∣=[?2?λ111?2?λ111?2?λ]=0\left | A-\lambda I \right |=\begin{bmatrix}-2-\lambda & 1 & 1\\ 1 & -2-\lambda & 1\\ 1 & 1 & -2-\lambda\end{bmatrix}=0∣A?λI∣=????2?λ11?1?2?λ1?11?2?λ????=0 解得:λ1=0,λ2=?3,λ3=?3\lambda _{1}=0,\lambda _{2}=-3,\lambda _{3}=-3λ1?=0,λ2?=?3,λ3?=?3
將λ1=0\lambda _{1}=0λ1?=0代入[?2?λ111?2?λ111?2?λ][x1x2x3]=0\begin{bmatrix}-2-\lambda & 1 & 1\\ 1 & -2-\lambda & 1\\ 1 & 1 & -2-\lambda\end{bmatrix}\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\end{bmatrix}=0????2?λ11?1?2?λ1?11?2?λ???????x1?x2?x3?????=0,得:[?2111?2111?2][x1x2x3]=0\begin{bmatrix}-2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2\end{bmatrix}\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\end{bmatrix}=0????211?1?21?11?2???????x1?x2?x3?????=0
將λ2=λ3=?3\lambda _{2}=\lambda _{3}=-3λ2?=λ3?=?3代入[?2?λ111?2?λ111?2?λ][x1x2x3]=0\begin{bmatrix}-2-\lambda & 1 & 1\\ 1 & -2-\lambda & 1\\ 1 & 1 & -2-\lambda\end{bmatrix}\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\end{bmatrix}=0????2?λ11?1?2?λ1?11?2?λ???????x1?x2?x3?????=0,得:[111111111][x1x2x3]=0\begin{bmatrix}1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1\end{bmatrix}\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\end{bmatrix}=0???111?111?111???????x1?x2?x3?????=0