UA OPTI544 量子光学14 量子电动力学基础
UA OPTI544 量子光學14 量子電動力學基礎
- 電磁場分解為諧振子的疊加
- 電場的波動方程
- 電磁場的哈密頓量
- 電磁場的量子化
- 薛定諤繪景中的電磁場算符
電磁場分解為諧振子的疊加
電場的波動方程
根據上一講介紹的場的量子化的思路,我們要嘗試對電磁場做Normal Mode Decomposition,并以此將它的哈密頓量表示為一系列諧振子的疊加。在經典電動力學中,電磁場的行為用Maxwell方程描述,
??E?=ρ?0??B?=0?×E?=???tB??×B?=1c2??tE?+1?0c2J?\nabla \cdot \vec E=\frac{\rho}{\epsilon_0} \\ \nabla \cdot \vec B=0 \\ \nabla \times \vec E=-\frac{\partial}{\partial t}\vec B \\ \nabla \times \vec B=\frac{1}{c^2}\frac{\partial}{\partial t}\vec E+\frac{1}{\epsilon_0 c^2} \vec J??E=?0?ρ???B=0?×E=??t??B?×B=c21??t??E+?0?c21?J
用3-D Fourier變換將其從時空域(r?,t)(\vec r,t)(r,t)變換到傅里葉域(k?,t)(\vec k ,t)(k,t),
ik??E?=ρ?0ik??B?=0ik?×E?=???tB?ik?×B?=1c2??tE?+1?0c2J?i\vec k \cdot \vec E = \frac{\rho}{\epsilon_0} \\ i\vec k \cdot \vec B = 0 \\ i \vec k \times \vec E = -\frac{\partial}{\partial t}\vec B \\ i \vec k \times \vec B = \frac{1}{c^2}\frac{\partial}{\partial t}\vec E+\frac{1}{\epsilon_0 c^2} \vec Jik?E=?0?ρ?ik?B=0ik×E=??t??Bik×B=c21??t??E+?0?c21?J
用E?∣∣,E?⊥\vec E_{||},\vec E_{\perp}E∣∣?,E⊥?與B?∣∣,B?⊥\vec B_{||},\vec B_{\perp}B∣∣?,B⊥?分別表示電場與磁感應在與波向量平行、垂直的方向的分量,代入到傅里葉域中的Maxwell方程,
ik??(E?∣∣+E?⊥)=ik??E?∣∣=ρ?0?E?∣∣=?iρk??0k2Coulomb?Fieldik??(B?∣∣+B?⊥)=ik??B?∣∣=0?B?∣∣=0Transverse?Magnetic?Fieldi\vec k \cdot (\vec E_{||}+\vec E_{\perp})=i\vec k \cdot \vec E_{||}= \frac{\rho}{\epsilon_0}\Rightarrow \vec E_{||}=-i \frac{\rho \vec k}{\epsilon_0k^2}\ \text{Coulomb\ Field} \\ i\vec k \cdot (\vec B_{||}+\vec B_{\perp})=i\vec k \cdot \vec B_{||}=0 \Rightarrow \vec B_{||}=0\ \text{Transverse\ Magnetic\ Field}ik?(E∣∣?+E⊥?)=ik?E∣∣?=?0?ρ??E∣∣?=?i?0?k2ρk??Coulomb?Fieldik?(B∣∣?+B⊥?)=ik?B∣∣?=0?B∣∣?=0?Transverse?Magnetic?Field
于是電磁場獨立于粒子的自由度只有E?⊥\vec E_{\perp}E⊥?與B?=B?⊥\vec B=\vec B_{\perp}B=B⊥?,它們滿足
??tB?=?ik?×E?⊥??tE?⊥=ic2k?×B??1?0J?⊥\frac{\partial}{\partial t}\vec B=-i\vec k \times \vec E_{\perp} \\ \frac{\partial}{\partial t}\vec E_{\perp} = ic^2 \vec k \times \vec B-\frac{1}{\epsilon_0}\vec J_{\perp}?t??B=?ik×E⊥??t??E⊥?=ic2k×B??0?1?J⊥?
對這兩個方程做逆3-D Fourier變換,結果為
??tB?=??×E?⊥??tE?⊥=c2?×B??1?0J?⊥\frac{\partial}{\partial t}\vec B=-\nabla \times \vec E_{\perp} \\ \frac{\partial}{\partial t}\vec E_{\perp} = c^2 \nabla \times \vec B-\frac{1}{\epsilon_0}\vec J_{\perp}?t??B=??×E⊥??t??E⊥?=c2?×B??0?1?J⊥?
對于這兩個方程,先對第二個方程關于ttt求偏導,然后將第一個方程代入第二個方程中,用向量恒等式化簡?×(?×E?⊥)\nabla \times (\nabla \times \vec E_{\perp})?×(?×E⊥?),可得電場的波動方程為
(?2?1c2?2?t2)E?⊥=1?0c2??tJ?⊥\left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\vec E_{\perp}=\frac{1}{\epsilon_0c^2}\frac{\partial}{\partial t}\vec J_{\perp}(?2?c21??t2?2?)E⊥?=?0?c21??t??J⊥?
電磁場的哈密頓量
為簡化問題,我們考慮一個長度為LLL,截面面積為AAA,體積為V=LAV=LAV=LA的空腔,在這個空腔中,電磁場只能沿zzz軸傳播。根據電磁場傳播的規律,此時波向量的方向為??z\vec \epsilon_z?z?,電場的方向為??x\vec \epsilon_x?x?,磁感應的方向為??y\vec \epsilon_y?y?。另外,電場的Normal Mode Decomposition為
Ex(z,t)=∑jAjqj(t)sin?(kjz),Aj=wj2mj2?0VE_x(z,t)=\sum_j A_j q_j(t)\sin(k_jz),A_j=\sqrt \frac{w_j^2m_j}{2 \epsilon_0 V}Ex?(z,t)=j∑?Aj?qj?(t)sin(kj?z),Aj?=2?0?Vwj2?mj???
其中mjm_jmj?為figucial mass,另外,
?×B?=???x?By?z=1c2??tE?⊥=???x1c2∑jAjq˙j(t)sin?(kjz)??By?z=?∑jAjc2q˙j(t)sin?(kjz)?By(z,t)=∑jAjc2kjq˙j(t)cos?(kjz)\nabla \times \vec B=-\vec \epsilon_x \frac{\partial B_y}{\partial z}=\frac{1}{c^2}\frac{\partial}{\partial t} \vec E_{\perp} =-\vec \epsilon_x\frac{1}{c^2} \sum_j A_j \dot q_j(t)\sin(k_jz) \\ \Rightarrow \frac{\partial B_y}{\partial z}=-\sum_j \frac{A_j}{c^2}\dot q_j(t)\sin(k_jz) \\ \Rightarrow B_y(z,t)=\sum_j \frac{A_j}{c^2k_j}\dot q_j(t)\cos(k_jz)?×B=??x??z?By??=c21??t??E⊥?=??x?c21?j∑?Aj?q˙?j?(t)sin(kj?z)??z?By??=?j∑?c2Aj??q˙?j?(t)sin(kj?z)?By?(z,t)=j∑?c2kj?Aj??q˙?j?(t)cos(kj?z)
電磁場的哈密頓量為
H=?0A2∫0L(∣E?∣2+c2∣B?∣2)dz=?0A2∫0Ldz∑j[Aj2qj2(t)sin?2(kjz)+Aj2c2kj2q˙j2(t)cos?2(kjz)]=∑j(12mjwj2qj2?勢能+12mjq˙j2?動能)\begin{aligned} H & = \frac{\epsilon_0A}{2}\int_0^L (|\vec E|^2+c^2|\vec B|^2)dz \\ & =\frac{\epsilon_0A}{2}\int_0^L dz \sum_j \left[ A_j^2 q_j^2(t)\sin^2(k_jz)+\frac{A_j^2}{c^2k_j^2}\dot q_j^2(t)\cos^2(k_jz) \right] \\ & = \sum_j \left( \underbrace{\frac{1}{2}m_jw_j^2q_j^2}_{勢能}+\underbrace{\frac{1}{2}m_j \dot q_j^2}_{動能}\right)\end{aligned}H?=2?0?A?∫0L?(∣E∣2+c2∣B∣2)dz=2?0?A?∫0L?dzj∑?[Aj2?qj2?(t)sin2(kj?z)+c2kj2?Aj2??q˙?j2?(t)cos2(kj?z)]=j∑????勢能21?mj?wj2?qj2???+動能21?mj?q˙?j2???????
這個推導需要用到簡諧波的性質:
Aj∫0Lsin?2(kjz)dz=Aj∫0Lcos?2(kjz)dz=V/2A_j\int_0^L \sin^2(k_jz)dz =A_j\int_0^L \cos^2(k_jz)dz =V/2Aj?∫0L?sin2(kj?z)dz=Aj?∫0L?cos2(kj?z)dz=V/2
電場的拉格朗日函數為
L=∑j(12mjq˙j2?12mjwj2qj2)\mathcal L = \sum_j \left( \frac{1}{2}m_j \dot q_j^2-\frac{1}{2}m_jw_j^2q_j^2\right)L=j∑?(21?mj?q˙?j2??21?mj?wj2?qj2?)
因此動量為
pj=?L?q˙j=mjq˙jp_j=\frac{\partial \mathcal L}{\partial \dot q_j}=m_j\dot q_jpj?=?q˙?j??L?=mj?q˙?j?
綜上,我們成功地把電磁場的哈密頓量用一系列諧振子的哈密頓量的和表示出來了。接下來,考慮將電磁場量子化。
電磁場的量子化
定義代表電磁場位移與動量的無量綱量,
Qj=qjq0,j,q0,j=2?mjwjPj=pjp0,j,p0,j=2?mjwjQ_j=\frac{q_j}{q_{0,j}},q_{0,j}=\sqrt{\frac{2\hbar}{m_jw_j}} \\ P_j = \frac{p_j}{p_{0,j}},p_{0,j}=\sqrt{2\hbar m_j w_j}Qj?=q0,j?qj??,q0,j?=mj?wj?2???Pj?=p0,j?pj??,p0,j?=2?mj?wj??
定義
αj(t)=P(t)+iQ(t)=αj(0)e?iwjt,Ej=Ajq0,j=?wj?0V\alpha_j(t)=P(t)+iQ(t)=\alpha_j(0)e^{-iw_jt},\mathcal E_j=A_jq_{0,j}=\sqrt{\frac{\hbar w_j}{\epsilon_0 V}}αj?(t)=P(t)+iQ(t)=αj?(0)e?iwj?t,Ej?=Aj?q0,j?=?0?V?wj???
Ej\mathcal E_jEj?的含義是field per phonon,用這些符號改寫電場與磁感應,
Ex(z,t)=∑jEj[αj(t)+α?(j)]sin?(kjz)By(z,t)=?ic∑jEj[αj(t)?α?(j)]cos?(kjz)E_x(z,t)=\sum_j \mathcal E_j[\alpha_j(t)+\alpha^*(j)]\sin(k_jz) \\ B_y(z,t)=-\frac{i}{c}\sum_j\mathcal E_j[\alpha_j(t)-\alpha^*(j)]\cos(k_jz)Ex?(z,t)=j∑?Ej?[αj?(t)+α?(j)]sin(kj?z)By?(z,t)=?ci?j∑?Ej?[αj?(t)?α?(j)]cos(kj?z)
薛定諤繪景中的電磁場算符
將相關物理量替換成算符:
[q^j,p^j′]=i?δjj′?{qj→q^jpj→p^j[a^j,a^j′?]=δjj′?{αj→a^jαj?→a^j?[\hat q_j,\hat p_{j'}]=i\hbar \delta_{jj'}\Leftarrow\begin{cases} q_j \to \hat q_j \\ p_j \to \hat p_j \end{cases} \\ [\hat a_j,\hat a_{j'}^{\dag}]= \delta_{jj'}\Leftarrow\begin{cases} \alpha_j \to \hat a_j \\ \alpha_j^* \to \hat a_j^{\dag} \end{cases}[q^?j?,p^?j′?]=i?δjj′??{qj?→q^?j?pj?→p^?j??[a^j?,a^j′??]=δjj′??{αj?→a^j?αj??→a^j???
從而電磁場算符為
E^x(z)=∑jEj(a^+a^j?)sin?(kjz)B^y(z,)=?ic∑jEj(a^j?a^j?)cos?(kjz)\hat E_x(z) = \sum_j \mathcal E_j(\hat a+\hat a_j^{\dag})\sin(k_jz) \\ \hat B_y(z,)=-\frac{i}{c}\sum_j\mathcal E_j( \hat a_j-\hat a_j^{\dag})\cos(k_jz)E^x?(z)=j∑?Ej?(a^+a^j??)sin(kj?z)B^y?(z,)=?ci?j∑?Ej?(a^j??a^j??)cos(kj?z)
這兩個算符滿足time-dependence in state,所以它們是薛定諤繪景中的算符。
總結
以上是生活随笔為你收集整理的UA OPTI544 量子光学14 量子电动力学基础的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 贝叶斯多元Logistics回归理论基础
- 下一篇: 正向插入排序