电动力学每日一题 2021/10/10
電動(dòng)力學(xué)每日一題 2021/10/10
上大學(xué)以前覺(jué)得自己大概數(shù)理化都能學(xué)得不錯(cuò),后來(lái)大一有兩門課讓我認(rèn)清了現(xiàn)實(shí),一門是程序設(shè)計(jì),另一門是模電。程序設(shè)計(jì)學(xué)C語(yǔ)言,我當(dāng)時(shí)學(xué)得勤奮刻苦,每次上機(jī)課都會(huì)主動(dòng)多待兩個(gè)小時(shí),但期中居然沒(méi)及格。模電就更不要說(shuō)了,甚至要分?jǐn)?shù)乘二才能及格。經(jīng)過(guò)這兩門課后我接受了人確實(shí)會(huì)有很多不擅長(zhǎng)的而且怎么學(xué)也學(xué)不會(huì)的東西。電磁理論電磁波經(jīng)典電動(dòng)力學(xué)基礎(chǔ)內(nèi)容差別不大,共同點(diǎn)是都帶“電”,于是在模電課上發(fā)生的估計(jì)又要發(fā)生一次了。為了這學(xué)期期末分?jǐn)?shù)不至于太難看,我打算試試每天記錄一道題,日復(fù)一日必有精進(jìn)。
(a) There’s no electric field inside the shell, so
E(r)={0,r<RQr^4π?0r2,r>R\textbf E(\textbf r) = \begin{cases} 0, r < R \\ \frac{Q \hat r}{ 4 \pi \epsilon_0 r^2}, r>R \end{cases}E(r)={0,r<R4π?0?r2Qr^?,r>R?
The energy density is
E(r)=12?0∣E∣2+12μ0∣H∣2={μ0I28π2r2sin?2θ,r<RQ232π2?0r4+μ0I28π2r2sin?2θ,r>R\mathcal{E}(\textbf r) = \frac{1}{2} \epsilon_0 |\textbf E|^2 + \frac{1}{2}\mu_0 |\textbf H|^2=\begin{cases} \frac{\mu_0 I^2}{8 \pi^2 r^2 \sin^2 \theta},r<R \\ \frac{Q^2}{32 \pi^2 \epsilon_0 r^4}+\frac{\mu_0 I^2}{8 \pi^2 r^2 \sin^2 \theta} ,r>R\end{cases}E(r)=21??0?∣E∣2+21?μ0?∣H∣2={8π2r2sin2θμ0?I2?,r<R32π2?0?r4Q2?+8π2r2sin2θμ0?I2?,r>R?
(b) The Poynting vector is
S(r)=E×H={0,r<R?QI8π2?0r3sin?θθ^,r>R\textbf S(\textbf r) = \textbf E \times \textbf H = \begin{cases}0,r<R \\ -\frac{QI}{8\pi^2 \epsilon_0 r^3 \sin \theta} \hat \theta , r>R \end{cases}S(r)=E×H={0,r<R?8π2?0?r3sinθQI?θ^,r>R?
Evaluate divergence of Poynting vector under spherical coordinate system, if θ∈(0,π)\theta \in(0,\pi)θ∈(0,π), r>Rr>Rr>R,
??S=1rsin?θ??θ(sin?θSθ)=1rsin?θ??θ(sin?θ?QI8π2?0r3sin?θ)=0\begin{aligned}\nabla \cdot \textbf S & = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta S_{\theta}) \\ & =\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{-QI}{8\pi^2 \epsilon_0 r^3 \sin \theta}\right) =0\end{aligned}??S?=rsinθ1??θ??(sinθSθ?)=rsinθ1??θ??(sinθ8π2?0?r3sinθ?QI?)=0?
(c) Along the z-axis, the Poynting vector is directed toward the wire where z>R,θ→0z>R, \theta \to 0z>R,θ→0 and away from the wire where z<?R,θ→πz<-R,\theta \to \piz<?R,θ→π. Taking a small cylinder of radius ?\epsilon? and height δ\deltaδ whose center on the bottom locates on (0,0,R)(0,0,R)(0,0,R), the surface integral of S(r)\textbf S(\textbf r)S(r) over the cylinder is
∮CylinderS?da=∫SideofCylinderS?da=?(2π?δ)(QI8π2?0r3sin?θ)\oint_{Cylinder} \textbf S \cdot d \textbf a=\int_{Side\ of\ Cylinder} \textbf S \cdot d \textbf a=-(2 \pi \epsilon \delta) \left( \frac{QI}{8\pi^2 \epsilon_0 r^3 \sin \theta}\right)∮Cylinder?S?da=∫Side?of?Cylinder?S?da=?(2π?δ)(8π2?0?r3sinθQI?)
Now θ\thetaθ is so small that ?≈rsin?θ\epsilon \approx r \sin \theta?≈rsinθ, ∣z∣=∣rcos?(θ)∣≈r|z| = |r \cos(\theta)| \approx r∣z∣=∣rcos(θ)∣≈r,
?(2π?δ)(QI8π2?0r3sin?θ)≈?QIδ4π?0z2-(2 \pi \epsilon \delta) \left( \frac{QI}{8\pi^2 \epsilon_0 r^3 \sin \theta}\right) \approx- \frac{QI \delta}{4 \pi \epsilon_0 z^2}?(2π?δ)(8π2?0?r3sinθQI?)≈?4π?0?z2QIδ?
Consider the electric field acting on the wire at zzz over a short segment of length δ\deltaδ. The work is
∫SegmentE?Jfreedl=QIδ4π?0z2\int_{Segment} \textbf E \cdot \textbf J_{free} dl=\frac{Q I \delta }{ 4 \pi \epsilon_0 z^2} ∫Segment?E?Jfree?dl=4π?0?z2QIδ?
Thus, the energy re-enters the wire in the region above the shell. Similarly, the energy emanates from the wire in the region below the shell.
能量守恒說(shuō)的是
??S+?E?t=0\nabla \cdot \textbf S + \frac{\partial \mathcal{E}}{\partial t} = 0??S+?t?E?=0
在這個(gè)問(wèn)題中
??S=1rsin?θ??θ(sin?θSθ)=1rsin?θ??θ(?QI8π2?0r3)\nabla \cdot \textbf S =\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta S_{\theta}) = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left( \frac{-QI}{8\pi^2 \epsilon_0 r^3 }\right)??S=rsinθ1??θ??(sinθSθ?)=rsinθ1??θ??(8π2?0?r3?QI?)
當(dāng)θ→0\theta \to 0θ→0或者θ→π\(zhòng)theta \to \piθ→π時(shí),sin?θ→0\sin \theta \to 0sinθ→0,??S\nabla \cdot S??S成了00\frac{0}{0}00?不定型。所以(c)問(wèn)要討論能量守恒需要用積分形式,在小體積內(nèi),Poynting vector的曲面積分應(yīng)該等于電線攜帶的能量變化,也就應(yīng)該等于電磁場(chǎng)對(duì)電線做的功。
總結(jié)
以上是生活随笔為你收集整理的电动力学每日一题 2021/10/10的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: UA OPTI512R 傅立叶光学导论1
- 下一篇: 电动力学每日一题 2021/10/11