UA MATH567 高维统计II 随机向量7 Grothendieck不等式
UA MATH567 高維統(tǒng)計(jì)II 隨機(jī)向量7 Grothendieck不等式
上一講我們介紹了用半正定規(guī)劃近似一個(gè)整數(shù)規(guī)劃的方法,要證明這種近似與原整數(shù)規(guī)劃解的大小關(guān)系,我們需要Grothendieck不等式,所以這一講我們證明這個(gè)不等式:
Grothendieck不等式
AAA是m×nm \times nm×n的實(shí)矩陣,xi,yj∈{?1,1}x_i,y_j \in \{-1,1\}xi?,yj?∈{?1,1},假設(shè)∣∑i,jAijxiyj∣≤1|\sum_{i,j}A_{ij}x_iy_j| \le 1∣∑i,j?Aij?xi?yj?∣≤1,則?H\forall H?H(Hilbert space),?ui,vj∈H\forall u_i,v_j \in H?ui?,vj?∈H,∥ui∥=∥vj∥=1\left\| u_i \right\|=\left\| v_j \right\|=1∥ui?∥=∥vj?∥=1,
∣∑i,jAi,j?ui,vj?∣≤K,K≤1.783|\sum_{i,j}A_{i,j}\langle u_i,v_j \rangle| \le K,K \le 1.783∣i,j∑?Ai,j??ui?,vj??∣≤K,K≤1.783
證明
首先我們分析一下這個(gè)不等式的條件,xi,yj∈{?1,1}x_i,y_j \in \{-1,1\}xi?,yj?∈{?1,1},∣∑i,jAijxiyj∣≤1|\sum_{i,j}A_{ij}x_iy_j| \le 1∣∑i,j?Aij?xi?yj?∣≤1,它等價(jià)于
∣∑i,jAijxiyj∣≤max?∣xi∣max?∣yj∣|\sum_{i,j}A_{ij}x_iy_j| \le \max |x_i| \max |y_j|∣i,j∑?Aij?xi?yj?∣≤max∣xi?∣max∣yj?∣
如果xi,yj∈{?1,1}x_i,y_j \in \{-1,1\}xi?,yj?∈{?1,1},∣∑i,jAijxiyj∣≤1|\sum_{i,j}A_{ij}x_iy_j| \le 1∣∑i,j?Aij?xi?yj?∣≤1成立,顯然
∣∑i,jAijxiyj∣≤max?∣xi∣max?∣yj∣|\sum_{i,j}A_{ij}x_iy_j| \le \max |x_i| \max |y_j|∣i,j∑?Aij?xi?yj?∣≤max∣xi?∣max∣yj?∣
如果∣∑i,jAijxiyj∣≤max?∣xi∣max?∣yj∣|\sum_{i,j}A_{ij}x_iy_j| \le \max |x_i| \max |y_j|∣∑i,j?Aij?xi?yj?∣≤max∣xi?∣max∣yj?∣成立,則
∣∑i,jAijximax?∣xi∣yjmax?∣yj∣∣≤1|\sum_{i,j}A_{ij}\frac{x_i}{\max |x_i|} \frac{y_j}{\max |y_j|}| \le 1∣i,j∑?Aij?max∣xi?∣xi??max∣yj?∣yj??∣≤1
顯然ximax?∣xi∣,yjmax?∣yj∣\frac{x_i}{\max |x_i|}, \frac{y_j}{\max |y_j|}max∣xi?∣xi??,max∣yj?∣yj??都在[?1,1][-1,1][?1,1]上取值,注意到∑i,jAijxiyj\sum_{i,j}A_{ij}x_iy_j∑i,j?Aij?xi?yj?是一個(gè)線性函數(shù),它的最優(yōu)解一定是角點(diǎn)解,所以xi,yj∈{?1,1}x_i,y_j \in \{-1,1\}xi?,yj?∈{?1,1},∣∑i,jAijxiyj∣≤1|\sum_{i,j}A_{ij}x_iy_j| \le 1∣∑i,j?Aij?xi?yj?∣≤1;
與之類似,我們可以分析一下結(jié)論,?H\forall H?H(Hilbert space),?ui,vj∈H\forall u_i,v_j \in H?ui?,vj?∈H,∥ui∥=∥vj∥=1\left\| u_i \right\|=\left\| v_j \right\|=1∥ui?∥=∥vj?∥=1,
∣∑i,jAi,j?ui,vj?∣≤K,K≤1.783|\sum_{i,j}A_{i,j}\langle u_i,v_j \rangle| \le K,K \le 1.783∣i,j∑?Ai,j??ui?,vj??∣≤K,K≤1.783
等價(jià)于?H\forall H?H(Hilbert space),?ui,vj∈H\forall u_i,v_j \in H?ui?,vj?∈H
∣∑i,jAi,j?ui,vj?∣≤Kmax?i∥ui∥max?j∥vj∥|\sum_{i,j}A_{i,j}\langle u_i,v_j \rangle| \le K\max_i\left\| u_i \right\| \max_j \left\| v_j \right\|∣i,j∑?Ai,j??ui?,vj??∣≤Kimax?∥ui?∥jmax?∥vj?∥
第一步,Reduction (先證明一個(gè)更弱的結(jié)果,即KKK與AAA相關(guān))
引入K(A)K(A)K(A),
K(A)=inf?{K:∣∑i,jAi,j?ui,vj?∣≤Kmax?i∥ui∥max?j∥vj∥}K(A) = \inf\{K:|\sum_{i,j}A_{i,j}\langle u_i,v_j \rangle| \le K\max_i\left\| u_i \right\| \max_j \left\| v_j \right\|\}K(A)=inf{K:∣i,j∑?Ai,j??ui?,vj??∣≤Kimax?∥ui?∥jmax?∥vj?∥}
顯然
K(A)≤∑∣Aij∣K(A) \le \sum |A_{ij}|K(A)≤∑∣Aij?∣
假設(shè){ui},{vj}\{u_i\},\{v_j\}{ui?},{vj?}是使得K(A)K(A)K(A)成為最小的ui,vj∈Hu_i,v_j \in Hui?,vj?∈H,從而
∑i,jAi,j?ui,vj?=K(A)\sum_{i,j}A_{i,j}\langle u_i,v_j \rangle = K(A)i,j∑?Ai,j??ui?,vj??=K(A)
第二步,Randomness
定義g~N(0,IN)g \sim N(0,I_N)g~N(0,IN?),N=n+mN = n+mN=n+m,定義Ui=?g,ui?,Vj=?g,vj?U_i = \langle g,u_i\rangle,V_j = \langle g,v_j\rangleUi?=?g,ui??,Vj?=?g,vj??,則Ui,VjU_i,V_jUi?,Vj?都是標(biāo)準(zhǔn)正態(tài)隨機(jī)變量,
E[UiVj]=?ui,vj?E[U_iV_j] = \langle u_i,v_j\rangleE[Ui?Vj?]=?ui?,vj??
所以
K(A)=∑i,jAi,j?ui,vj?=∑i,jAi,jE[UiVj]=E∑i,jAijUiVjK(A) = \sum_{i,j}A_{i,j}\langle u_i,v_j \rangle = \sum_{i,j}A_{i,j}E[U_iV_j] = E \sum_{i,j}A_{ij}U_iV_jK(A)=i,j∑?Ai,j??ui?,vj??=i,j∑?Ai,j?E[Ui?Vj?]=Ei,j∑?Aij?Ui?Vj?
第三步,Truncation
定義R>1R>1R>1,
Ui=Ui?+Ui+=Ui1∣Ui∣≤R+Ui1∣Ui∣>RVj=Vj?+Vj+=Vj1∣Vj∣≤R+Vj1∣Vj∣>RU_i = U_i^-+U_i^+ = U_i1_{|U_i| \le R}+U_i1_{|U_i|>R} \\ V_j= V_j^-+V_j^+ = V_j1_{|V_j| \le R}+V_j1_{|V_j|>R}Ui?=Ui??+Ui+?=Ui?1∣Ui?∣≤R?+Ui?1∣Ui?∣>R?Vj?=Vj??+Vj+?=Vj?1∣Vj?∣≤R?+Vj?1∣Vj?∣>R?
顯然Ui?,Vj?U_i^-,V_j^-Ui??,Vj??都是有界的,考慮
∥Ui+∥22≤2(R+1R)12πe?R2/2≤4R2\left\| U_i^+ \right\|_2^2 \le 2(R+\frac{1}{R})\frac{1}{\sqrt{2\pi}}e^{-R^2/2} \le \frac{4}{R^2}∥∥?Ui+?∥∥?22?≤2(R+R1?)2π?1?e?R2/2≤R24?
同樣的
∥Vj+∥22≤4R2\left\| V_j^+ \right\|_2^2 \le \frac{4}{R^2}∥∥?Vj+?∥∥?22?≤R24?
第四步,計(jì)算
K(A)=E∑i,jAijUiVj=E∑i,jAij(Ui?+Ui+)(Vj?+Vj+)=∑i,jAijEUi?Vj?+∑i,jAijEUi?Vj++∑i,jAijEUi+Vj?+∑i,jAijEUi+Vj+K(A) = E \sum_{i,j}A_{ij}U_iV_j = E \sum_{i,j}A_{ij}(U_i^-+U_i^+)(V_j^-+V_j^+) \\ = \sum_{i,j}A_{ij}EU_i^-V_j^-+\sum_{i,j}A_{ij}EU_i^-V_j^++\sum_{i,j}A_{ij}EU_i^+V_j^-+\sum_{i,j}A_{ij}EU_i^+V_j^+ K(A)=Ei,j∑?Aij?Ui?Vj?=Ei,j∑?Aij?(Ui??+Ui+?)(Vj??+Vj+?)=i,j∑?Aij?EUi??Vj??+i,j∑?Aij?EUi??Vj+?+i,j∑?Aij?EUi+?Vj??+i,j∑?Aij?EUi+?Vj+?
先分析一下第三項(xiàng),根據(jù)Cauchy-Schwarz不等式
∑i,jAijEUi+Vj?≤∑i,jAij∥Ui+∥2∥Vj?∥2≤K(A)max?∥Ui+∥2max?∥Vj?∥2≤2K(A)R\sum_{i,j}A_{ij}EU_i^+V_j^- \le \sum_{i,j}A_{ij}\left\| U_i^+ \right\|_2 \left\| V_j^- \right\|_2 \\ \le K(A) \max \left\| U_i^+ \right\|_2 \max \left\| V_j^- \right\|_2 \le \frac{2K(A)}{R}i,j∑?Aij?EUi+?Vj??≤i,j∑?Aij?∥∥?Ui+?∥∥?2?∥∥?Vj??∥∥?2?≤K(A)max∥∥?Ui+?∥∥?2?max∥∥?Vj??∥∥?2?≤R2K(A)?
第二項(xiàng)與之類似,所以
K(A)≤R2+6K(A)RK(A) \le R^2+\frac{6K(A)}{R}K(A)≤R2+R6K(A)?
注意到這時(shí)的K(A)K(A)K(A)就和AAA沒(méi)有關(guān)系了,于是我們記為KKK,考慮RRR的不同取值,我們可以得到KKK的不同的上界。
總結(jié)
以上是生活随笔為你收集整理的UA MATH567 高维统计II 随机向量7 Grothendieck不等式的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: UA MATH567 高维统计II 随机
- 下一篇: UA MATH563 概率论的数学基础