UA SIE545 优化理论基础2 凸函数 概念 理论 总结
UA SIE545 優(yōu)化理論基礎(chǔ)2 凸函數(shù) 概念 理論 總結(jié)
凸函數(shù)的概念與簡(jiǎn)單性質(zhì)
Convex function f:S→Rf:S \to \mathbb{R}f:S→R where SSS is a nonempty convex set. Call fff a convex function on SSS if ?x1,x2∈S\forall x_1,x_2 \in S?x1?,x2?∈S, λ∈(0,1)\lambda \in (0,1)λ∈(0,1)
f(λx1+(1?λ)x2)≤λf(x1)+(1?λ)f(x2)f(\lambda x_1+(1-\lambda)x_2) \le \lambda f(x_1)+(1-\lambda)f(x_2)f(λx1?+(1?λ)x2?)≤λf(x1?)+(1?λ)f(x2?)
Call fff a strictly convex function on SSS if ?x1,x2∈S\forall x_1,x_2 \in S?x1?,x2?∈S, λ∈(0,1)\lambda \in (0,1)λ∈(0,1)
f(λx1+(1?λ)x2)<λf(x1)+(1?λ)f(x2)f(\lambda x_1+(1-\lambda)x_2) < \lambda f(x_1)+(1-\lambda)f(x_2)f(λx1?+(1?λ)x2?)<λf(x1?)+(1?λ)f(x2?)
Call fff a (strictly) concave function on SSS if ?f-f?f is (strictly) convex.
Level set
Properties
次梯度(sub-gradient)
epigraph f:S→Rf:S \to \mathbb{R}f:S→R where SSS is a nonempty convex set.
epif={(x,y):x∈S,y∈R,y≥f(x)}epi \ f = \{(x,y):x \in S, y \in \mathbb{R}, y \ge f(x)\}epi?f={(x,y):x∈S,y∈R,y≥f(x)}
hypograph f:S→Rf:S \to \mathbb{R}f:S→R where SSS is a nonempty convex set.
hypf={(x,y):x∈S,y∈R,y≤f(x)}hyp \ f = \{(x,y):x \in S, y \in \mathbb{R}, y \le f(x)\}hyp?f={(x,y):x∈S,y∈R,y≤f(x)}
Property f:S→Rf:S \to \mathbb{R}f:S→R where SSS is a nonempty convex set. fff is convex iff epifepi \ fepi?f is convex.
subgradient f:S→Rf:S \to \mathbb{R}f:S→R is convex where SSS is a nonempty convex set. Then ξ\xiξ is called subgradient of fff at xˉ\bar xxˉ if
f(x)≥f(xˉ)+ξT(x?xˉ),?x∈Sf(x) \ge f(\bar x)+\xi^T(x-\bar x),\forall x \in Sf(x)≥f(xˉ)+ξT(x?xˉ),?x∈S
f:S→Rf:S \to \mathbb{R}f:S→R is concave where SSS is a nonempty convex set. Then ξ\xiξ is called subgradient of fff at xˉ\bar xxˉ if
f(x)≤f(xˉ)+ξT(x?xˉ),?x∈Sf(x) \le f(\bar x)+\xi^T(x-\bar x),\forall x \in Sf(x)≤f(xˉ)+ξT(x?xˉ),?x∈S
Property
f(x)≥f(xˉ)+ξT(x?xˉ),?x∈Sf(x) \ge f(\bar x)+\xi^T(x-\bar x),\forall x \in Sf(x)≥f(xˉ)+ξT(x?xˉ),?x∈Sand the hyperplane
H={(x,y):y=f(xˉ)+ξT(x?xˉ)}H = \{(x,y):y = f(\bar x)+\xi^T(x-\bar x)\}H={(x,y):y=f(xˉ)+ξT(x?xˉ)}supports epifepi\ fepi?f at (xˉ,f(xˉ))(\bar x,f(\bar x))(xˉ,f(xˉ)).
f(x)>f(xˉ)+ξT(x?xˉ),?x∈Sf(x)> f(\bar x)+\xi^T(x-\bar x),\forall x \in Sf(x)>f(xˉ)+ξT(x?xˉ),?x∈S
f(x)≥f(xˉ)+ξT(x?xˉ),?x∈Sf(x) \ge f(\bar x)+\xi^T(x-\bar x),\forall x \in Sf(x)≥f(xˉ)+ξT(x?xˉ),?x∈Sthen fff is convex.
可微的凸函數(shù)
differentiable f:S→Rf:S \to \mathbb{R}f:S→R where SSS is a nonempty set. Say fff is differentiable at xˉ∈intS\bar x \in int Sxˉ∈intS if ?β\exists \beta?β such that
f(x)=f(xˉ)+βT(x?xˉ)+o(∥x?xˉ∥)β=?f(xˉ)f(x)=f(\bar x)+\beta^T(x-\bar x)+o(\left\| x-\bar x \right\|) \\ \beta = \nabla f(\bar x)f(x)=f(xˉ)+βT(x?xˉ)+o(∥x?xˉ∥)β=?f(xˉ)
Property
PSD positive semi-definite, ?x∈Rn\forall x \in \mathbb{R}^n?x∈Rn, xTHx≥0x^THx \ge 0xTHx≥0
PD positive definite, ?x∈Rn\forall x \in \mathbb{R}^n?x∈Rn, xTHx>0x^THx > 0xTHx>0
Tips for checking PSD/PD
Property
凸函數(shù)的推廣
quasiconvex f:S→Rf:S \to \mathbb{R}f:S→R where SSS is a nonempty convex set. ?x1,x2∈S\forall x_1,x_2 \in S?x1?,x2?∈S, f(λx1+(1?λ)x2)≤max?(f(x1),f(x2))f(\lambda x_1+(1-\lambda)x_2) \le \max(f(x_1),f(x_2))f(λx1?+(1?λ)x2?)≤max(f(x1?),f(x2?))
Property
strict quasiconvex f:S→Rf:S \to \mathbb{R}f:S→R where SSS is a nonempty convex set. ?x1,x2∈S\forall x_1,x_2 \in S?x1?,x2?∈S, f(x1)≠f(x2)f(x_1) \ne f(x_2)f(x1?)?=f(x2?), f(λx1+(1?λ)x2)<max?(f(x1),f(x2))f(\lambda x_1+(1-\lambda)x_2) < \max(f(x_1),f(x_2))f(λx1?+(1?λ)x2?)<max(f(x1?),f(x2?))
Property
strong quasiconvex
f:S→Rf:S \to \mathbb{R}f:S→R where SSS is a nonempty convex set. ?x1,x2∈S\forall x_1,x_2 \in S?x1?,x2?∈S, x1≠x2x_1 \ne x_2x1??=x2?, f(λx1+(1?λ)x2)<max?(f(x1),f(x2))f(\lambda x_1+(1-\lambda)x_2) < \max(f(x_1),f(x_2))f(λx1?+(1?λ)x2?)<max(f(x1?),f(x2?))
Property
Pseudoconvex ?x1,x2∈X\forall x_1,x_2 \in X?x1?,x2?∈X such that ?f(x1)T(x2?x1)≥0\nabla f(x_1)^T(x_2-x_1) \ge 0?f(x1?)T(x2??x1?)≥0, we have f(x2)≥f(x1)f(x_2) \ge f(x_1)f(x2?)≥f(x1?).
Property
總結(jié)
以上是生活随笔為你收集整理的UA SIE545 优化理论基础2 凸函数 概念 理论 总结的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: UA MATH523A 实分析3 积分理
- 下一篇: UA MATH523A 实分析3 积分理