UA MATH571B 试验设计 Quarter 2-level析因设计
UA MATH571B 試驗設計 Quarter 2-level析因設計
- 2k?22^{k-2}2k?2設計的基本概念
- 2k?22^{k-2}2k?2試驗結果的SAS分析
Quarter 2-level析因設計需要的試驗單位比Half 2-level析因設計還要少一半,適用于試驗資源更加有限的情況,它的分析方法也與Half 2-level析因設計類似。
2k?22^{k-2}2k?2設計的基本概念
與2k?12^{k-1}2k?1設計通過defining relation決定alias從而確定試驗的factor的思路一致,2k?22^{k-2}2k?2設計也需要類似的工具,但這種工具被稱為generating ralations。假設PPP和QQQ是generator,則generating ralations是I=P,I=QI = P,\ I = QI=P,?I=Q
稱PQPQPQ為generalized interaction,I=P=Q=PQI = P = Q = PQI=P=Q=PQ為complete defining relation,根據complete defining relation可以比較簡單地寫出所有的alias。
例1 寫出generating relations為I=ABD,I=BCEI=ABD,\ I = BCEI=ABD,?I=BCE的25?22^{5-2}25?2 設計的所有alias。
第一步,寫出complete defining relation:
P=ABD,Q=ACE?PQ=A2BCDE=BCDE?I=ABD=ACE=BCDEP = ABD,Q = ACE \Rightarrow PQ = A^2BCDE = BCDE \\ \Rightarrow I = ABD = ACE = BCDEP=ABD,Q=ACE?PQ=A2BCDE=BCDE?I=ABD=ACE=BCDE
第二步,根據complete defining relation寫出alias。根據complete defining relation可以判斷出這一個resolution III的25?22^{5-2}25?2 設計,所有的main effect都不會互為alias,于是在第一列的2-6行可以填入A-E,每一行中各列可以填入行首與第一行對應列的word的乘積。這樣就只剩下最后兩行了,兩個letter的word應該有C52=10C_5^2=10C52?=10個,現在已經用了6個,說明還有四個,這四個是BC、BE、CD、DE,根據I=BCDEI=BCDEI=BCDE,可以看出BC、DE互為alias,BE、CD互為alias,根據這個觀察完成表格:
| A | BD | CE | ABCDE |
| B | AD | ABCE | CDE |
| C | ABCD | AE | BDE |
| D | AB | ACDE | BCE |
| E | ABDE | AC | BCD |
| BC | ACD | ABE | DE |
| BE | ADE | ABC | CD |
2k?22^{k-2}2k?2試驗結果的SAS分析
上表是一個unreplicated 2IV6?22^{6-2}_{IV}2IV6?2? design的試驗結果,complete defining relation是
I=ABCE=BCDF=ADEFI = ABCE = BCDF = ADEFI=ABCE=BCDF=ADEF
下面列出它的alias
| A | BCE | ABCDF | DEF |
| B | ACE | CDF | ABDEF |
| C | ABE | BDF | ACDEF |
| D | ABCDE | BCF | AEF |
| E | ABC | BCDEF | ADF |
| F | ABCEF | BCD | ADE |
| AB | CE | ACDF | BDEF |
| AC | BE | ABDF | CDEF |
| AE | BC | ABCDEF | DF |
| BD | ACDE | CF | ABEF |
| BF | ACEF | CD | ABDE |
| AD | BCDE | ABCF | EF |
| AF | BCEF | ABCD | DE |
| ABD | CDE | ACF | BEF |
| ABF | CEF | ACD | BDE |
下面用SAS做分析:
第一步 錄入數據
data ex2; do D = -1 to 1 by 2; do C = -1 to 1 by 2; do B = -1 to 1 by 2; do A = -1 to 1 by 2; E = A*B*C; F = B*C*D; input y @@; output; end; end; end; end; datalines; 6 10 32 60 4 15 26 60 8 12 34 60 16 5 37 52 ;proc print data = ex2; run;第二步 定義交互項
注意定義交互項時有幾個原則:
按照這個原則我們選取第一列的所有word,
data inter; set ex2; AB = A*B; AC = A*C; AD = A*D; AE = A*E; AF = A*F; BD = B*D; BF = B*F; ABD = A*BD; ABF = A*BF; run;proc print data = inter; run;第三步 估計每個word的effect(glm method)
proc glm data=inter; class A B C D E F AB AC AD AE AF BD BF ABD ABF; model y=A B C D E F AB AC AD AE AF BD BF ABD ABF; estimate 'A' A -1 1; estimate 'B' B -1 1; estimate 'C' C -1 1; estimate 'D' D -1 1; estimate 'E' E -1 1; estimate 'F' F -1 1; estimate 'AB' AB -1 1; estimate 'AC' AC -1 1; estimate 'AD' AD -1 1; estimate 'AE' AE -1 1; estimate 'AF' AF -1 1; estimate 'BD' BD -1 1; estimate 'BF' BF -1 1; estimate 'ABD' ABD -1 1; estimate 'ABF' ABF -1 1; run;
根據這個表基本可以判斷A、B、AB是顯著的。
第四步 用Normal Probability Plot進一步驗證第三步的結果
proc reg outest=effect1 data = inter; model y = A B C D E F AB AC AD AE AF BD BF ABD ABF; run;data effect2; set effect1; drop y intercept _RMSE_; run;proc transpose data = effect2 out = effect3; run;data effect4; set effect3; effect = col1*2; run;proc sort data = effect4; by effect; run;proc transpose data = effect4 out = effect40; run;data effect5; set effect4; where _NAME_ ^= 'block'; run;proc print data = effect5; run;proc rank data = effect5 normal = blom; var effect; ranks neff; symbol1 v = circle;proc gplot; plot effect*neff = _NAME_; run;
顯然A、B、AB的確是顯著的!
第五步 分析只含顯著的word的refined model
proc glm data = inter alpha = 0.05; class A B AB; model y = A|B; run;
ANOVA的結果說明A、B、AB顯著。
回歸分析的結果為
y=27.3125+6.9375A+17.8125B+5.9375ABy = 27.3125 + 6.9375A + 17.8125B + 5.9375ABy=27.3125+6.9375A+17.8125B+5.9375AB
總結
以上是生活随笔為你收集整理的UA MATH571B 试验设计 Quarter 2-level析因设计的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH564 概率论 依概率收敛
- 下一篇: UA MATH566 一个例子:什么是隐