UA MATH564 概率论 依概率收敛的题目
UA MATH564 概率論 依概率收斂的一個例題
X1,X2,?,Xn~iida+EXP(λ)X_1,X_2,\cdots,X_n \sim_{iid} a+EXP(\lambda)X1?,X2?,?,Xn?~iid?a+EXP(λ), Yn=min?(X1,?,Xn)Y_n = \min(X_1,\cdots,X_n)Yn?=min(X1?,?,Xn?). Prove Yn→pcY_n \to_p cYn?→p?c and find c.
Answer.
Density of XiX_iXi? is
fX(x)=λe?λ(x?a),x≥af_X(x) = \lambda e^{-\lambda(x-a)},x\ge afX?(x)=λe?λ(x?a),x≥a
and CDF of XiX_iXi? is
FX(x)=∫axλe?λ(s?a)ds=1?e?λ(x?a),x≥aF_X(x) = \int_a^x \lambda e^{-\lambda(s-a)}ds = 1-e^{-\lambda(x-a)},x\ge aFX?(x)=∫ax?λe?λ(s?a)ds=1?e?λ(x?a),x≥a
For Yn=min?(X1,?,Xn)Y_n = \min(X_1,\cdots,X_n)Yn?=min(X1?,?,Xn?),
FYn(y)=P(Yn≤y)=P(min?(X1,?,Xn)≤y)=1?P(min?(X1,?,Xn)>y)=1?[P(Xi>y)]n=1?[1?FX(y)]n=1?e?nλ(y?a),y≥aF_{Y_n}(y) = P(Y_n \le y) = P( \min(X_1,\cdots,X_n) \le y ) = 1 - P(\min(X_1,\cdots,X_n)>y) \\ = 1 - [P(X_i>y)]^n = 1 - [1-F_X(y)]^n = 1 - e^{-n\lambda(y-a)},y\ge aFYn??(y)=P(Yn?≤y)=P(min(X1?,?,Xn?)≤y)=1?P(min(X1?,?,Xn?)>y)=1?[P(Xi?>y)]n=1?[1?FX?(y)]n=1?e?nλ(y?a),y≥a
This means Yn~a+EXP(nλ)Y_n \sim a + EXP(n\lambda)Yn?~a+EXP(nλ),
EYn=a+1nλ→a,asn→∞Var(Yn)=1n2λ2→0,asn→∞EY_n = a + \frac{1}{n\lambda} \to a,\ as\ n\to\infty\\ \ Var(Y_n) = \frac{1}{n^2\lambda^2}\to 0,\ as\ n\to\inftyEYn?=a+nλ1?→a,?as?n→∞?Var(Yn?)=n2λ21?→0,?as?n→∞
So Yn→L2a?Yn→paY_n \to_{L_2}a \Rightarrow Y_n \to_p aYn?→L2??a?Yn?→p?a.
總結
以上是生活随笔為你收集整理的UA MATH564 概率论 依概率收敛的题目的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH571A ANCOVA简介
- 下一篇: UA MATH564 概率论 标准二元正