UA MATH564 概率论 Dirichlet分布
UA MATH564 概率論 Dirichlet分布
在UA MATH564 概率論IV 次序統計量中,我們介紹了均勻分布U(0,1)U(0,1)U(0,1)的多個次序統計量的聯合分布就是Dirichlet分布,在Bayesian統計中,Dirichlet分布是非常常用的共軛分布族,這一講介紹Dirichlet分布的一些性質。
Dirichlet分布的一般形式為
f(x∣α)=Γ(∑i=1nαi)∏i=1nΓ(αi)∏i=1nxiαi?1f(x|\alpha) = \frac{\Gamma(\sum_{i=1}^n \alpha_i)}{\prod_{i=1}^n \Gamma(\alpha_i)} \prod_{i=1}^n x_i^{\alpha_i-1}f(x∣α)=∏i=1n?Γ(αi?)Γ(∑i=1n?αi?)?i=1∏n?xiαi??1?
定義在n?1n-1n?1維(因為是n?1n-1n?1維的線性流形)的單純形Δn?1={x:∑i=1nxi=1,xi≥0}\Delta^{n-1}=\{x:\sum_{i=1}^n x_i=1,x_i \ge 0\}Δn?1={x:∑i=1n?xi?=1,xi?≥0}上,記為Dir(α1,?,αn)Dir(\alpha_1,\cdots,\alpha_n)Dir(α1?,?,αn?),根據次序統計量中推導的結果,{U1,?,Un}\{U_1,\cdots,U_n\}{U1?,?,Un?}的mmm個次序統計量(序號為i1,?,imi_{1},\cdots,i_{m}i1?,?,im?)的聯合分布為Dir(i1,i2?i2,?,n?im+1)Dir(i_1,i_2-i_2,\cdots,n-i_m+1)Dir(i1?,i2??i2?,?,n?im?+1)。Dirichlet分布可以理解為analog to multinomial distribution in continuous case. 下面先討論兩個Dirichlet分布的基本性質:
證明
實際上在次序統計量中已經給出了這兩個結論,這里正式證明一下。
性質一:
fXi(x)=∫∑j=1nxj=1,xi=xΓ(∑j=1nαj)∏j=1nΓ(αj)∏j=1nxjαj?1∏j=1,j≠idxj=Γ(∑j=1nαj)xαi?1Γ(αi)∏j=1,j≠inΓ(αj)∫∑j=1,j≠inxj1?x=1∏j=1,j≠inxjαj?1∏j=1,j≠idxj=Γ(∑j=1nαj)xαi?1(1?x)∑j=1nαj?αi?1Γ(αi)∏j=1,j≠inΓ(αj)∫∑j=1,j≠inxj1?x=1∏j=1,j≠in(xj1?x)αj?1∏j=1,j≠idxj1?x=Γ(∑j=1nαj)xαi?1(1?x)∑j=1nαj?αi?1Γ(αi)∏j=1,j≠inΓ(αj)∏j=1,j≠inΓ(αj)Γ(∑j=1nαj?αi)=Γ(∑j=1nαj)xαi?1(1?x)∑j=1nαj?αi?1Γ(αi)Γ(∑j=1nαj?αi)f_{X_i}(x) = \int_{\sum_{j=1}^n x_j=1,x_i=x}\frac{\Gamma(\sum_{j=1}^n \alpha_j)}{\prod_{j=1}^n \Gamma(\alpha_j)} \prod_{j=1}^n x_j^{\alpha_j-1}\prod_{j=1,j\ne i}dx_j \\ = \frac{\Gamma(\sum_{j=1}^n \alpha_j)x^{\alpha_i-1}}{ \Gamma(\alpha_i)\prod_{j=1,j\ne i}^n \Gamma(\alpha_j)}\int_{\sum_{j=1,j\ne i}^n \frac{x_j}{1-x}=1} \prod_{j=1,j\ne i }^n x_j^{\alpha_j-1}\prod_{j=1,j\ne i}dx_j \\ = \frac{\Gamma(\sum_{j=1}^n \alpha_j)x^{\alpha_i-1}(1-x)^{\sum_{j=1}^n \alpha_j - \alpha_i - 1}}{ \Gamma(\alpha_i)\prod_{j=1,j\ne i}^n \Gamma(\alpha_j)}\int_{\sum_{j=1,j\ne i}^n \frac{x_j}{1-x}=1} \prod_{j=1,j\ne i}^n \left( \frac{x_j}{1-x} \right)^{\alpha_j-1}\prod_{j=1,j\ne i}d\frac{x_j}{1-x} \\ = \frac{\Gamma(\sum_{j=1}^n \alpha_j)x^{\alpha_i-1}(1-x)^{\sum_{j=1}^n \alpha_j - \alpha_i - 1}}{ \Gamma(\alpha_i)\prod_{j=1,j\ne i}^n \Gamma(\alpha_j)} \frac{\prod_{j=1,j\ne i}^n \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^n \alpha_j - \alpha_i )} \\ = \frac{\Gamma(\sum_{j=1}^n \alpha_j)x^{\alpha_i-1}(1-x)^{\sum_{j=1}^n \alpha_j - \alpha_i - 1}}{ \Gamma(\alpha_i)\Gamma(\sum_{j=1}^n \alpha_j - \alpha_i )}fXi??(x)=∫∑j=1n?xj?=1,xi?=x?∏j=1n?Γ(αj?)Γ(∑j=1n?αj?)?j=1∏n?xjαj??1?j=1,j?=i∏?dxj?=Γ(αi?)∏j=1,j?=in?Γ(αj?)Γ(∑j=1n?αj?)xαi??1?∫∑j=1,j?=in?1?xxj??=1?j=1,j?=i∏n?xjαj??1?j=1,j?=i∏?dxj?=Γ(αi?)∏j=1,j?=in?Γ(αj?)Γ(∑j=1n?αj?)xαi??1(1?x)∑j=1n?αj??αi??1?∫∑j=1,j?=in?1?xxj??=1?j=1,j?=i∏n?(1?xxj??)αj??1j=1,j?=i∏?d1?xxj??=Γ(αi?)∏j=1,j?=in?Γ(αj?)Γ(∑j=1n?αj?)xαi??1(1?x)∑j=1n?αj??αi??1?Γ(∑j=1n?αj??αi?)∏j=1,j?=in?Γ(αj?)?=Γ(αi?)Γ(∑j=1n?αj??αi?)Γ(∑j=1n?αj?)xαi??1(1?x)∑j=1n?αj??αi??1?
性質二:根據性質性質一,只需要證明Xi+Xi+1~Beta(αi+αi+1,∑j=1nαj?(αi+αi+1))X_i+X_{i+1}\sim Beta(\alpha_i+\alpha_{i+1},\sum_{j=1}^n \alpha_j-(\alpha_i+\alpha_{i+1}))Xi?+Xi+1?~Beta(αi?+αi+1?,∑j=1n?αj??(αi?+αi+1?))即可。
fXi+Xi+1(y)=∫∑j=1nxj=1,xi+xi+1=yΓ(∑j=1nαj)∏j=1nΓ(αj)∏j=1nxjαj?1∏j=1ndxj=∫xi+xi+1=yΓ(∑j=1nαj)xiαi?1xi+1αi+1?1dxidxi+1∏j=1nΓ(αj)∫∑j=1,j≠i,i+1nxj1?y=1∏j=1,j≠i,i+1nxjαj?1∏j=1,j≠i,i+1ndxj=∫xi+xi+1=yΓ(∑j=1nαj)xiαi?1xi+1αi+1?1∏j=1nΓ(αj)(1?y)∑j=1nαj?αi?αi+1?1∏j=1,j≠i,i+1nΓ(αj)Γ(∑j=1nαj?αi?αi+1)dxidxi+1=(1?y)∑j=1nαj?αi?αi+1?1∫xi+xi+1=yΓ(∑j=1nαj)xiαi?1xi+1αi+1?1Γ(αi)Γ(αi+1)Γ(∑j=1nαj?αi?αi+1)dxidxi+1=(1?y)∑j=1nαj?αi?αi+1?1yαi+αi+1?1?1∫xi/y+xi+1/y=1Γ(∑j=1nαj)(xi/y)αi?1(xi+1/y)αi+1?1Γ(αi)Γ(αi+1)Γ(∑j=1nαj?αi?αi+1)dxi/ydxi+1/y=Γ(∑j=1nαj)xiαi?1xi+1αi+1?1Γ(αi+αi+1)Γ(∑j=1nαj?αi?αi+1)(1?y)∑j=1nαj?αi?αi+1?1yαi+αi+1?1?1f_{X_{i}+X_{i+1}}(y) = \int_{\sum_{j=1}^n x_j=1,x_i+x_{i+1}=y}\frac{\Gamma(\sum_{j=1}^n \alpha_j)}{\prod_{j=1}^n \Gamma(\alpha_j)} \prod_{j=1}^n x_j^{\alpha_j-1}\prod_{j=1}^ndx_j \\ = \int_{x_i + x_{i+1}=y}\frac{\Gamma(\sum_{j=1}^n \alpha_j)x_i^{\alpha_i-1}x_{i+1}^{\alpha_{i+1}-1}dx_idx_{i+1}}{\prod_{j=1}^n \Gamma(\alpha_j)} \int_{\sum_{j=1,j\ne i,i+1}^n \frac{x_j}{1-y}=1}\prod_{j=1,j \ne i,i+1}^n x_j^{\alpha_j-1}\prod_{j=1,j \ne i,i+1}^ndx_j \\ = \int_{x_i + x_{i+1}=y}\frac{\Gamma(\sum_{j=1}^n \alpha_j)x_i^{\alpha_i-1}x_{i+1}^{\alpha_{i+1}-1}}{\prod_{j=1}^n \Gamma(\alpha_j)} \frac{(1-y)^{\sum_{j=1}^n \alpha_j - \alpha_{i}-\alpha_{i+1}-1}\prod_{j=1,j \ne i,i+1}^n \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^n \alpha_j - \alpha_i - \alpha_{i+1})}dx_idx_{i+1} \\ =(1-y)^{\sum_{j=1}^n \alpha_j - \alpha_{i}-\alpha_{i+1}-1} \int_{x_i + x_{i+1}=y}\frac{\Gamma(\sum_{j=1}^n \alpha_j)x_i^{\alpha_i-1}x_{i+1}^{\alpha_{i+1}-1}}{\Gamma(\alpha_i)\Gamma(\alpha_{i+1})\Gamma(\sum_{j=1}^n \alpha_j - \alpha_i - \alpha_{i+1})}dx_idx_{i+1} \\ = (1-y)^{\sum_{j=1}^n \alpha_j - \alpha_{i}-\alpha_{i+1}-1} y^{\alpha_i+\alpha_{i+1-1}-1}\int_{x_i/y + x_{i+1}/y=1}\frac{\Gamma(\sum_{j=1}^n \alpha_j)(x_i/y)^{\alpha_i-1}(x_{i+1}/y)^{\alpha_{i+1}-1}}{\Gamma(\alpha_i)\Gamma(\alpha_{i+1})\Gamma(\sum_{j=1}^n \alpha_j - \alpha_i - \alpha_{i+1})}dx_i/ydx_{i+1}/y \\ = \frac{\Gamma(\sum_{j=1}^n \alpha_j)x_i^{\alpha_i-1}x_{i+1}^{\alpha_{i+1}-1}}{\Gamma(\alpha_i+\alpha_{i+1})\Gamma(\sum_{j=1}^n \alpha_j - \alpha_i - \alpha_{i+1})}(1-y)^{\sum_{j=1}^n \alpha_j - \alpha_{i}-\alpha_{i+1}-1} y^{\alpha_i+\alpha_{i+1-1}-1}fXi?+Xi+1??(y)=∫∑j=1n?xj?=1,xi?+xi+1?=y?∏j=1n?Γ(αj?)Γ(∑j=1n?αj?)?j=1∏n?xjαj??1?j=1∏n?dxj?=∫xi?+xi+1?=y?∏j=1n?Γ(αj?)Γ(∑j=1n?αj?)xiαi??1?xi+1αi+1??1?dxi?dxi+1??∫∑j=1,j?=i,i+1n?1?yxj??=1?j=1,j?=i,i+1∏n?xjαj??1?j=1,j?=i,i+1∏n?dxj?=∫xi?+xi+1?=y?∏j=1n?Γ(αj?)Γ(∑j=1n?αj?)xiαi??1?xi+1αi+1??1??Γ(∑j=1n?αj??αi??αi+1?)(1?y)∑j=1n?αj??αi??αi+1??1∏j=1,j?=i,i+1n?Γ(αj?)?dxi?dxi+1?=(1?y)∑j=1n?αj??αi??αi+1??1∫xi?+xi+1?=y?Γ(αi?)Γ(αi+1?)Γ(∑j=1n?αj??αi??αi+1?)Γ(∑j=1n?αj?)xiαi??1?xi+1αi+1??1??dxi?dxi+1?=(1?y)∑j=1n?αj??αi??αi+1??1yαi?+αi+1?1??1∫xi?/y+xi+1?/y=1?Γ(αi?)Γ(αi+1?)Γ(∑j=1n?αj??αi??αi+1?)Γ(∑j=1n?αj?)(xi?/y)αi??1(xi+1?/y)αi+1??1?dxi?/ydxi+1?/y=Γ(αi?+αi+1?)Γ(∑j=1n?αj??αi??αi+1?)Γ(∑j=1n?αj?)xiαi??1?xi+1αi+1??1??(1?y)∑j=1n?αj??αi??αi+1??1yαi?+αi+1?1??1
Dirichlet分布在Bayesian統計中非常重要,是因為二項分布的連續化是beta分布,多項分布的連續化是Dirichlet分布,所以他們很自然地就是共軛分布族。
總結
以上是生活随笔為你收集整理的UA MATH564 概率论 Dirichlet分布的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH574 概率论 一个均匀分
- 下一篇: UA MATH566 统计理论 Baye