UA MATH566 统计理论 Fisher信息论的性质下
UA MATH566 統(tǒng)計理論 Fisher信息量的性質(zhì)下
- 輔助統(tǒng)計量的Fisher信息為0
- 分布族參數(shù)變換后的Fisher信息
- 統(tǒng)計量的Fisher信息的有界性
下面介紹一些Fisher信息量的常用性質(zhì)。
輔助統(tǒng)計量的Fisher信息為0
假設(shè)A(X)~g(a,θ)A(X)\sim g(a,\theta)A(X)~g(a,θ),它的Fisher信息為
IA(X)(θ)=E[S(A,θ)]2=E[?log?g(A,θ)?θ?log?gT(A,θ)?θ]IA(X)(θ)=0?E[?log?g(A,θ)?θ?log?gT(A,θ)?θ]=0I_{A(X)}(\theta) = E[S(A,\theta)]^2 = E \left[ \frac{\partial \log g(A,\theta)}{\partial \theta} \frac{\partial \log g^T(A,\theta)}{\partial \theta}\right] \\ I_{A(X)}(\theta) = 0 \Leftrightarrow E \left[ \frac{\partial \log g(A,\theta)}{\partial \theta} \frac{\partial \log g^T(A,\theta)}{\partial \theta}\right] = 0IA(X)?(θ)=E[S(A,θ)]2=E[?θ?logg(A,θ)??θ?loggT(A,θ)?]IA(X)?(θ)=0?E[?θ?logg(A,θ)??θ?loggT(A,θ)?]=0
假設(shè)g(a,θ)g(a,\theta)g(a,θ)是完備的,則上式表示
?log?g(a,θ)?θ=0,?a\frac{\partial \log g(a,\theta)}{\partial \theta} = 0 ,\forall a?θ?logg(a,θ)?=0,?a
這說明g(a,θ)g(a,\theta)g(a,θ)與參數(shù)θ\thetaθ無關(guān),這正是A(X)A(X)A(X)為輔助統(tǒng)計量的定義。根據(jù)這個推導(dǎo)過程,如果某個統(tǒng)計量的Fisher信息量為0,那么它也一定是輔助統(tǒng)計量。
分布族參數(shù)變換后的Fisher信息
已知分布族f(x,θ)f(x,\theta)f(x,θ)的Fisher信息為I(θ)I(\theta)I(θ),現(xiàn)在想把它的參數(shù)變換為ξ\xiξ,則變換后的Fisher信息為
I(ξ)=[Dξθ(ξ)]TI(θ)Dξθ(ξ)I(\xi) = [D_{\xi}\theta(\xi)]^TI(\theta)D_{\xi}\theta(\xi)I(ξ)=[Dξ?θ(ξ)]TI(θ)Dξ?θ(ξ)
假設(shè)θ\thetaθ為nnn維的,ξ\xiξ為mmm維的,那么上式可以用分量表示為
Iab(ξ)=∑i,j=1nIij?θi?ξa?θj?ξb,a,b=1,?,mI_{ab}(\xi) = \sum_{i,j=1}^n I_{ij}\frac{\partial \theta_i}{\partial \xi_a}\frac{\partial \theta_j}{\partial \xi_b},a,b = 1,\cdots,mIab?(ξ)=i,j=1∑n?Iij??ξa??θi???ξb??θj??,a,b=1,?,m
根據(jù)定義計算即可
Iab(ξ)=E[?log?L?ξa?log?L?ξb]=E[(∑i=1n?log?L?θi?θi?ξa)(∑j=1n?log?L?θj?θj?ξb)]=∑i,j=1nE[?log?L?θi?log?L?θj]?θi?ξa?θj?ξb=∑i,j=1nIij?θi?ξa?θj?ξbI_{ab}(\xi) = E \left[ \frac{\partial \log L}{\partial \xi_a} \frac{\partial \log L}{\partial \xi_b}\right] = E \left[ \left(\sum_{i=1}^n \frac{\partial \log L}{\partial \theta_i} \frac{\partial \theta_i}{\partial \xi_a}\right)\left(\sum_{j=1}^n \frac{\partial \log L}{\partial \theta_j} \frac{\partial \theta_j}{\partial \xi_b}\right)\right] \\ =\sum_{i,j=1}^n E \left[ \frac{\partial \log L}{\partial \theta_i} \frac{\partial \log L}{\partial \theta_j}\right]\frac{\partial \theta_i}{\partial \xi_a}\frac{\partial \theta_j}{\partial \xi_b}=\sum_{i,j=1}^n I_{ij}\frac{\partial \theta_i}{\partial \xi_a}\frac{\partial \theta_j}{\partial \xi_b}Iab?(ξ)=E[?ξa??logL??ξb??logL?]=E[(i=1∑n??θi??logL??ξa??θi??)(j=1∑n??θj??logL??ξb??θj??)]=i,j=1∑n?E[?θi??logL??θj??logL?]?ξa??θi???ξb??θj??=i,j=1∑n?Iij??ξa??θi???ξb??θj??
例 自然參數(shù)形式的指數(shù)分布族f(x,θ)=h(x)exp?(θTT(x)?b(θ))f(x,\theta) = h(x)\exp(\theta^T T(x)-b(\theta))f(x,θ)=h(x)exp(θTT(x)?b(θ))的Fisher信息量為
I(θ)=b′′(θ)=Var(T(X))I(\theta) = b''(\theta) = Var(T(X))I(θ)=b′′(θ)=Var(T(X))
假設(shè)參數(shù)η=Eθ(T(X))=b′(θ)\eta = E_{\theta}(T(X)) = b'(\theta)η=Eθ?(T(X))=b′(θ),則根據(jù)隱映照定理,
Dηθ(η)=[b′′(θ)]?1,θ=b′?1(η)D_{\eta}\theta(\eta) = [b''(\theta)]^{-1},\theta = b^{'-1}(\eta)Dη?θ(η)=[b′′(θ)]?1,θ=b′?1(η)
根據(jù)Fisher信息參數(shù)變換的性質(zhì),
I(η)=[b′′?1(θ)]TI(θ)b′′?1(θ)=b′′?1(θ),θ=b′?1(η)I(\eta) = [b^{''-1}(\theta)]^{T}I(\theta)b^{''-1}(\theta) = b^{''-1}(\theta),\theta = b^{'-1}(\eta)I(η)=[b′′?1(θ)]TI(θ)b′′?1(θ)=b′′?1(θ),θ=b′?1(η)
統(tǒng)計量的Fisher信息的有界性
假設(shè)X~f(x,θ)X \sim f(x,\theta)X~f(x,θ),T(X)~g(t,θ)T(X) \sim g(t,\theta)T(X)~g(t,θ)是它的任意統(tǒng)計量,則
0≤IT(X)≤IX(θ)0 \le I_T(X) \le I_X(\theta)0≤IT?(X)≤IX?(θ)
當(dāng)且僅當(dāng)T(X)T(X)T(X)為輔助統(tǒng)計量時取下界,當(dāng)且僅當(dāng)T(X)T(X)T(X)為充分統(tǒng)計量時取上界。
證明
下界可以用IT(X)(θ)=Varθ(T(X))I_{T(X)}(\theta) = Var_{\theta}(T(X))IT(X)?(θ)=Varθ?(T(X))說明,方差一定是非負(fù)的,第一條性質(zhì)說明當(dāng)且僅當(dāng)T(X)T(X)T(X)為輔助統(tǒng)計量時取等。計算
IX(θ)=Var(S(X,θ))=E[Var(S(X,θ)∣T)]+Var[E(S(X,θ)∣T)]I_{X}(\theta) = Var (S(X,\theta)) = E[Var (S(X,\theta)|T)] + Var[E(S(X,\theta)|T)]IX?(θ)=Var(S(X,θ))=E[Var(S(X,θ)∣T)]+Var[E(S(X,θ)∣T)]
假設(shè)XXX是概率空間(X,B(X),PX)(\mathcal{X},\mathcal{B}(\mathcal{X}),P_X)(X,B(X),PX?)上的隨機變量,X?Rn\mathcal{X} \subset \mathbb{R}^nX?Rn。統(tǒng)計量T(X)T(X)T(X)是一個由復(fù)合函數(shù)T(X):X→T?Rk,k<nT(X): \mathcal{X} \to \mathcal{T} \subset \mathbb{R}^k,k<nT(X):X→T?Rk,k<n定義的在概率空間(X,B(X),PX)(\mathcal{X},\mathcal{B}(\mathcal{X}),P_X)(X,B(X),PX?)上的隨機變量,其中TTT是可測函數(shù)。假設(shè)T(X)T(X)T(X)是(T,B(T),PT)(\mathcal{T},\mathcal{B}(\mathcal{T}),P_T)(T,B(T),PT?)上的隨機變量,則TTT是可測函數(shù)意味著?B∈B(T),T?1(B)∈B(X)\forall B \in \mathcal{B}(\mathcal{T}),T^{-1}(B) \in \mathcal{B}(\mathcal{X})?B∈B(T),T?1(B)∈B(X),從而導(dǎo)出測度PTP_TPT?可以表示為PT(B)=PX(T?1(B))P_T(B)=P_X(T^{-1}(B))PT?(B)=PX?(T?1(B))。假設(shè)測度被參數(shù)化,且用θ\thetaθ表示其參數(shù),則導(dǎo)出測度的關(guān)系意味著
?PT(B)?θ=?PX(T?1(B))?θ\frac{\partial P_T(B)}{\partial \theta} = \frac{\partial P_X(T^{-1}(B))}{\partial \theta}?θ?PT?(B)?=?θ?PX?(T?1(B))?
將概率測度寫成概率密度的積分,上式表示
?PT(B)?θ=??θ∫Bg(t,θ)dt=?PX(T?1(B))?θ=??θ∫T?1(B)f(x,θ)dx\frac{\partial P_T(B)}{\partial \theta} = \frac{\partial }{\partial \theta} \int_{B} g(t,\theta)dt = \frac{\partial P_X(T^{-1}(B))}{\partial \theta} = \frac{\partial }{\partial \theta}\int_{T^{-1}(B)}f(x,\theta)dx?θ?PT?(B)?=?θ??∫B?g(t,θ)dt=?θ?PX?(T?1(B))?=?θ??∫T?1(B)?f(x,θ)dx
湊出得分函數(shù)的形式,
∫Bg(t,θ)S(t,θ)dt=∫T?1(B)f(x,θ)S(x,θ)dx\int_{B} g(t,\theta)S(t,\theta) dt = \int_{T^{-1}(B)}f(x,\theta)S(x,\theta)dx∫B?g(t,θ)S(t,θ)dt=∫T?1(B)?f(x,θ)S(x,θ)dx
假設(shè)f(x,θ)f(x,\theta)f(x,θ)是完備分布族,這個式子說明S(T,θ)=E[S(X,θ)∣T]S(T,\theta) = E[S(X,\theta)|T]S(T,θ)=E[S(X,θ)∣T]。因此第二項可以化簡為
Var[E(S(X,θ)∣T)]=Var[S(T,θ)]=IT(θ)Var[E(S(X,\theta)|T)] = Var[S(T,\theta)] = I_T(\theta)Var[E(S(X,θ)∣T)]=Var[S(T,θ)]=IT?(θ)
因此
IX(θ)?IT(θ)=E[Var(S(X,θ)∣T)]≥0I_X(\theta) - I_T(\theta) = E[Var (S(X,\theta)|T)]\ge0IX?(θ)?IT?(θ)=E[Var(S(X,θ)∣T)]≥0
下面驗證取等條件。充分性:
假設(shè)TTT是充分統(tǒng)計量,根據(jù)Fisher-Neyman定理,
f(x,θ)=g(T(x),θ)h(x)?log?f(x,θ)=log?g(T(x),θ)+log?h(x)???θlog?f(x,θ)=??θlog?g(T(x),θ)f(x,\theta) = g(T(x),\theta)h(x) \\ \Rightarrow \log f(x,\theta) = \log g(T(x),\theta) + \log h(x) \\ \Rightarrow \frac{\partial }{\partial \theta} \log f(x,\theta) = \frac{\partial }{\partial \theta} \log g(T(x),\theta)f(x,θ)=g(T(x),θ)h(x)?logf(x,θ)=logg(T(x),θ)+logh(x)??θ??logf(x,θ)=?θ??logg(T(x),θ)
因此IT(θ)=IX(θ)I_T(\theta) = I_X(\theta)IT?(θ)=IX?(θ)。
必要性:
我們計算下面這個量,
E[(S(X,θ)?S(T,θ))(S(X,θ)?S(T,θ))T]=E[S(X,θ)ST(X,θ)]+E[S(T,θ)ST(T,θ)]?2E[S(X,θ)ST(T,θ)]=IX(θ)+IT(θ)?2IT(θ)=IX(θ)?IT(θ)E[(S(X,\theta)-S(T,\theta))(S(X,\theta)-S(T,\theta))^T] \\ = E[S(X,\theta)S^T(X,\theta)] + E[S(T,\theta)S^T(T,\theta)] - 2E[S(X,\theta)S^T(T,\theta)] \\ = I_X(\theta) + I_T(\theta) - 2I_T(\theta) = I_X(\theta) - I_T(\theta)E[(S(X,θ)?S(T,θ))(S(X,θ)?S(T,θ))T]=E[S(X,θ)ST(X,θ)]+E[S(T,θ)ST(T,θ)]?2E[S(X,θ)ST(T,θ)]=IX?(θ)+IT?(θ)?2IT?(θ)=IX?(θ)?IT?(θ)
其中
E[S(X,θ)ST(T,θ)]=E[E[S(X,θ)ST(T,θ)∣T]]=E[E[S(X,θ)∣T]ST(T,θ)]=E[S(T,θ)ST(T,θ)]=IT(θ)E[S(X,\theta)S^T(T,\theta)] = E[E[S(X,\theta)S^T(T,\theta)|T]] = E[E[S(X,\theta)|T]S^T(T,\theta)] \\ = E[S(T,\theta)S^T(T,\theta)] = I_T(\theta)E[S(X,θ)ST(T,θ)]=E[E[S(X,θ)ST(T,θ)∣T]]=E[E[S(X,θ)∣T]ST(T,θ)]=E[S(T,θ)ST(T,θ)]=IT?(θ)
這個式子說明
IX?IT=E[(S(X,θ)?S(T,θ))(S(X,θ)?S(T,θ))T]I_X - I_T = E[(S(X,\theta)-S(T,\theta))(S(X,\theta)-S(T,\theta))^T]IX??IT?=E[(S(X,θ)?S(T,θ))(S(X,θ)?S(T,θ))T]
左邊為0,說明S(T,θ)=S(X,θ)S(T,\theta) = S(X,\theta)S(T,θ)=S(X,θ),即
??θlog?f(x,θ)=??θlog?g(T(x),θ)\frac{\partial }{\partial \theta} \log f(x,\theta) = \frac{\partial }{\partial \theta} \log g(T(x),\theta)?θ??logf(x,θ)=?θ??logg(T(x),θ)
f(x,θ)f(x,\theta)f(x,θ)與g(t,θ)g(t,\theta)g(t,θ)只相差一個與θ\thetaθ無關(guān)的常函數(shù),根據(jù)Neyman-Fisher定理,T(X)T(X)T(X)是充分統(tǒng)計量。
總結(jié)
以上是生活随笔為你收集整理的UA MATH566 统计理论 Fisher信息论的性质下的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH566 统计理论 Fish
- 下一篇: UA MATH571B 试验设计 总结