UA MATH564 概率论 QE练习题2
UA MATH564 概率論 QE練習題2
- 第一題
- 第二題
- 第三題
這是2014年5月理論的1-3題。
第一題
For X2X_2X2?,
P(X2=0∣X1=0)=b+1b+r+1P(X2=1∣X1=0)=rb+r+1P(X2=0∣X1=1)=bb+r+1P(X2=1∣X1=1)=r+1b+r+1P(X_2 = 0|X_1 = 0) = \frac{b+1}{b+r+1} \\ P(X_2 = 1|X_1 = 0) = \frac{r}{b+r+1} \\ P(X_2 = 0|X_1 = 1) = \frac{b}{b+r+1} \\ P(X_2 = 1|X_1 = 1) = \frac{r+1}{b+r+1}P(X2?=0∣X1?=0)=b+r+1b+1?P(X2?=1∣X1?=0)=b+r+1r?P(X2?=0∣X1?=1)=b+r+1b?P(X2?=1∣X1?=1)=b+r+1r+1?
Notice Y∈{0,1,2}Y \in \{0,1,2\}Y∈{0,1,2}.
P(Y=0)=P(X1=0,X2=0)=P(X2=0∣X1=0)P(X1=0)=b(b+1)(b+r+1)(b+r)P(Y=1)=P(X2=1∣X1=0)P(X1=0)+P(X2=0∣X1=1)P(X1=1)=rb(b+r+1)(b+r)+br(b+r+1)(b+r)=2br(b+r+1)(b+r)P(Y=2)=P(X2=1∣X1=1)P(X1=1)=r(r+1)(b+r+1)(b+r)P(Y = 0) = P(X_1 = 0,X_2 = 0) = P(X_2 = 0|X_1 = 0)P(X_1 = 0) = \frac{b(b+1)}{(b+r+1)(b+r)} \\ P(Y = 1) = P(X_2 = 1|X_1 = 0)P(X_1=0) + P(X_2 = 0|X_1 = 1)P(X_1=1) \\ = \frac{rb}{(b+r+1)(b+r)} + \frac{br}{(b+r+1)(b+r)} = \frac{2br}{(b+r+1)(b+r)} \\ P(Y = 2) =P(X_2 = 1|X_1 = 1)P(X_1=1) =\frac{r(r+1)}{(b+r+1)(b+r)} P(Y=0)=P(X1?=0,X2?=0)=P(X2?=0∣X1?=0)P(X1?=0)=(b+r+1)(b+r)b(b+1)?P(Y=1)=P(X2?=1∣X1?=0)P(X1?=0)+P(X2?=0∣X1?=1)P(X1?=1)=(b+r+1)(b+r)rb?+(b+r+1)(b+r)br?=(b+r+1)(b+r)2br?P(Y=2)=P(X2?=1∣X1?=1)P(X1?=1)=(b+r+1)(b+r)r(r+1)?
So
EY=2br(b+r+1)(b+r)+2r(r+1)(b+r+1)(b+r)=2rb+rEY2=2br(b+r+1)(b+r)+4r(r+1)(b+r+1)(b+r)=4r2+2br+4r(b+r+1)(b+r)VarY=EY2?(EY)2=4r2+2br+4r(b+r+1)(b+r)?4r2(b+r)2=4r2b+2b2r+4br+4r3+2br2+4r2?4r2b?4r3?4r2(b+r+1)(b+r)2=2br(b+r+2)(b+r+1)(b+r)2EY = \frac{2br}{(b+r+1)(b+r)} + \frac{2r(r+1)}{(b+r+1)(b+r)} =\frac{2r}{b+r} \\ EY^2 =\frac{2br}{(b+r+1)(b+r)} + \frac{4r(r+1)}{(b+r+1)(b+r)}=\frac{4r^2 + 2br+4r}{(b+r+1)(b+r)} \\ Var Y = EY^2 - (EY)^2 = \frac{4r^2 + 2br+4r}{(b+r+1)(b+r)} - \frac{4r^2}{(b+r)^2} \\= \frac{4r^2b+2b^2r+4br+4r^3+2br^2+4r^2 - 4r^2b-4r^3-4r^2}{(b+r+1)(b+r)^2} = \frac{2br(b+r+2)}{(b+r+1)(b+r)^2}EY=(b+r+1)(b+r)2br?+(b+r+1)(b+r)2r(r+1)?=b+r2r?EY2=(b+r+1)(b+r)2br?+(b+r+1)(b+r)4r(r+1)?=(b+r+1)(b+r)4r2+2br+4r?VarY=EY2?(EY)2=(b+r+1)(b+r)4r2+2br+4r??(b+r)24r2?=(b+r+1)(b+r)24r2b+2b2r+4br+4r3+2br2+4r2?4r2b?4r3?4r2?=(b+r+1)(b+r)22br(b+r+2)?
第二題
這道題的題干是不對的,τY\tau_YτY?前漏了一個1/n1/n1/n的系數。
Now that μY=0\mu_Y = 0μY?=0, kurtosis is
τY=EY4σY4?EY4=σY4τY\tau_Y = \frac{EY^4}{\sigma_Y^4} \Rightarrow EY^4 = \sigma^4_Y \tau_YτY?=σY4?EY4??EY4=σY4?τY?
For T=∑i=1nYiT = \sum_{i=1}^n Y_iT=∑i=1n?Yi?,
ET2=E(∑i=1nYi)2=E∑i=1nYi2+∑i≠jEYiEYj=E∑i=1nYi2+E∑i≠jYiYj=nσY2ET4=E(∑i=1nYi)4=E(∑i=1nYi2+∑i≠jYiYj)2=E(∑i=1nYi2)2+2E(∑i=1nYi2)(∑i≠jYiYj)+E(∑i≠jYiYj)2=E(∑i=1nYi4)+3E(∑i≠jYk2YiYj)+3E(∑i≠jYi2Yj2)+E(∑i≠j≠k≠lYiYjYkYl)=nσY4τY+3n(n?1)σY4ET^2 = E(\sum_{i=1}^n Y_i)^2 = E\sum_{i=1}^n Y_i^2 + \sum_{i \ne j} EY_iEY_j = E\sum_{i=1}^n Y_i^2 + E \sum_{i \ne j} Y_iY_j = n\sigma_Y^2 \\ ET^4 = E(\sum_{i=1}^n Y_i)^4 = E(\sum_{i=1}^n Y_i^2 + \sum_{i \ne j} Y_iY_j)^2 \\= E(\sum_{i=1}^n Y_i^2)^2 +2E(\sum_{i=1}^n Y_i^2)(\sum_{i \ne j} Y_iY_j) + E( \sum_{i \ne j} Y_iY_j)^2\\ = E(\sum_{i=1}^n Y_i^4) + 3E(\sum_{i \ne j} Y_k^2Y_iY_j) + 3E(\sum_{i \ne j}Y_i^2Y_j^2) +E(\sum_{i \ne j\ne k\ne l}Y_iY_jY_kY_l) \\= n\sigma_Y^4 \tau_Y + 3n(n-1)\sigma_Y^4ET2=E(i=1∑n?Yi?)2=Ei=1∑n?Yi2?+i?=j∑?EYi?EYj?=Ei=1∑n?Yi2?+Ei?=j∑?Yi?Yj?=nσY2?ET4=E(i=1∑n?Yi?)4=E(i=1∑n?Yi2?+i?=j∑?Yi?Yj?)2=E(i=1∑n?Yi2?)2+2E(i=1∑n?Yi2?)(i?=j∑?Yi?Yj?)+E(i?=j∑?Yi?Yj?)2=E(i=1∑n?Yi4?)+3E(i?=j∑?Yk2?Yi?Yj?)+3E(i?=j∑?Yi2?Yj2?)+E(i?=j?=k?=l∑?Yi?Yj?Yk?Yl?)=nσY4?τY?+3n(n?1)σY4?
So
τT=ET4(ET)2=1nτY+3(n?1)n\tau_T = \frac{ET^4}{(ET)^2} = \frac{1}{n}\tau_Y + \frac{3(n-1)}{n}τT?=(ET)2ET4?=n1?τY?+n3(n?1)?
第三題
Part a
Expectation of XXX is
EX=∫0∞xθe?xθdx=?xe?xθ∣0∞+∫0∞e?xθdx=θEX = \int_0^{\infty} \frac{x}{\theta}e^{-\frac{x}{\theta}}dx = -xe^{-\frac{x}{\theta}}|_0^{\infty} + \int_{0}^{\infty} e^{-\frac{x}{\theta}}dx = \thetaEX=∫0∞?θx?e?θx?dx=?xe?θx?∣0∞?+∫0∞?e?θx?dx=θ
Eθ^a=aEXˉn=an∑i=1nEXi=aθE\hat{\theta}_a = aE\bar{X}_n = \frac{a}{n}\sum_{i=1}^n EX_i = a\thetaEθ^a?=aEXˉn?=na?i=1∑n?EXi?=aθ
Second-order moment of XXX is
EX2=∫0∞x2θe?xθdx=?x2e?xθ∣0∞+2∫0∞xe?xθdx=2θ2EX^2 = \int_{0}^{\infty} \frac{x^2}{\theta}e^{-\frac{x}{\theta}}dx = -x^2 e^{-\frac{x}{\theta}}|_0^{\infty} + 2\int_0^{\infty} xe^{-\frac{x}{\theta}}dx = 2\theta^2EX2=∫0∞?θx2?e?θx?dx=?x2e?θx?∣0∞?+2∫0∞?xe?θx?dx=2θ2
Eθ^a2=a2n2E(∑i=1nXi)2=a2n2∑i=1nE(Xi)2+a2n2∑i≠jEXiXj=2na2θ2+n(n?1)a2θ2n2=n+1na2θ2E\hat{\theta}_a^2 = \frac{a^2}{n^2} E (\sum_{i=1}^nX_i)^2 = \frac{a^2}{n^2}\sum_{i=1}^nE (X_i)^2 +\frac{a^2}{n^2}\sum_{i\ne j}E X_iX_j \\= \frac{2na^2\theta^2 + n(n-1)a^2\theta^2}{n^2} = \frac{n+1}{n}a^2\theta^2Eθ^a2?=n2a2?E(i=1∑n?Xi?)2=n2a2?i=1∑n?E(Xi?)2+n2a2?i?=j∑?EXi?Xj?=n22na2θ2+n(n?1)a2θ2?=nn+1?a2θ2
Now consider
E(θ^a?θ)2=Eθ^a2?2θEθ^a+θ2=((n+1)a2n?2a+1)θ2E(\hat{\theta}_a - \theta)^2 = E\hat{\theta}_a^2 - 2\theta E\hat{\theta}_a + \theta^2 = (\frac{(n+1)a^2}{n}-2a+1)\theta^2E(θ^a??θ)2=Eθ^a2??2θEθ^a?+θ2=(n(n+1)a2??2a+1)θ2
To make E(θ^a?θ)2E(\hat{\theta}_a - \theta)^2E(θ^a??θ)2 as small as possible,
a=nn+1a = \frac{n}{n+1}a=n+1n?
Part b
By LLN, Xˉn→pEX=θ\bar{X}_n \to_p EX = \thetaXˉn?→p?EX=θ, so Xˉn\bar{X}_nXˉn? is consistent. By CLT,
Xˉn?θ1nθ→dN(0,1)\frac{\bar{X}_n - \theta}{\sqrt{\frac{1}{n}}\theta} \to_d N(0,1)n1??θXˉn??θ?→d?N(0,1)
So aymptotic variance is θ2/n\theta^2/nθ2/n.
Part c
By LLN, Yˉn→pEY=1/θ\bar{Y}_n \to_p EY = 1/\thetaYˉn?→p?EY=1/θ. By property of convrgence in probability
1/Yˉ→pθ1/\bar{Y} \to_p \theta1/Yˉ→p?θ. So 1/Yˉn1/\bar{Y}_n1/Yˉn? is consistent. Now apply generalized CLT:
(參考UA MATH564 概率論V 中心極限定理的Delta方法)
We can get
1/Yˉn?θ1/nθ→dN(0,1)\frac{1/\bar{Y}_n - \theta}{\sqrt{1/n}\theta} \to_d N(0,1)1/n?θ1/Yˉn??θ?→d?N(0,1)
So aymptotic variance is θ2/n\theta^2/nθ2/n.
總結
以上是生活随笔為你收集整理的UA MATH564 概率论 QE练习题2的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH566 统计理论 QE练习
- 下一篇: UA MATH566 统计理论 QE练习