UA MATH564 概率论VI 数理统计基础3 卡方分布中
UA MATH564 概率論VI 數理統計基礎3 卡方分布中
- 卡方分布的基本性質
上一講介紹了卡方分布的定義:假設X1,?,XnX_1,\cdots,X_nX1?,?,Xn?互相獨立,并且Xi~N(ai,1)X_i \sim N(a_i,1)Xi?~N(ai?,1),則稱
∑i=1nXi2~χ2(n,δ)\sum_{i=1}^n X_i^2 \sim \chi^2(n,\delta)i=1∑n?Xi2?~χ2(n,δ)
其中nnn代表樣本數,δ\deltaδ是非中心化參數
δ=∑i=1nai2\delta = \sqrt{\sum_{i=1}^n a_i^2}δ=i=1∑n?ai2??
如果樣本來自標準正態總體,則δ=0\delta=0δ=0,稱之為中心化的卡方分布。并推導了它的概率密度為:
k(x∣n,δ)=e?δ2+x2∑i=0∞δ2i2ii!xi+n/2?12i+n/2Γ(i+n/2)k(x|n,\delta) = e^{-\frac{\delta^2+x}{2}}\sum_{i=0}^{\infty}\frac{\delta^{2i}}{2^ii!} \frac{x^{i+n/2-1}}{2^{i+n/2}\Gamma(i+n/2)}k(x∣n,δ)=e?2δ2+x?i=0∑∞?2ii!δ2i?2i+n/2Γ(i+n/2)xi+n/2?1?
當δ=0\delta=0δ=0時,
k(x∣n,0)=K′(x∣n,0)=(1/2)n/2Γ(n/2)xn2?1e?x/2=dΓ(n2,12)k(x|n,0) = K'(x|n,0) = \frac{(1/2)^{n/2}}{\Gamma(n/2)}x^{\frac{n}{2}-1}e^{-x/2}=_d \Gamma(\frac{n}{2},\frac{1}{2})k(x∣n,0)=K′(x∣n,0)=Γ(n/2)(1/2)n/2?x2n??1e?x/2=d?Γ(2n?,21?)
下面介紹卡方分布的一些常用性質:
卡方分布的基本性質
用一般的正態分布構造卡方分布的方法在數理統計基礎1中已經介紹過了,這里不再重復,性質1可以用gamma分布的規律直接得到,性質2的前半部分就是Classical CLT,性質3描述的是卡方分布的可加性。下面給出性質2的后半部分和性質3的證明。
證明
性質2第二個式子,考慮
P(2Xn?2n≤x)=P(Xn≤x2+22nx+2n2)=P(Xn?n2n≤x+x222n)P(\sqrt{2X_n}-\sqrt{2n} \le x) = P(X_n \le \frac{x^2 + 2\sqrt{2n}x+2n}{2}) = P(\frac{X_n-n}{\sqrt{2n}}\le x + \frac{x^2}{2\sqrt{2n}})P(2Xn???2n?≤x)=P(Xn?≤2x2+22n?x+2n?)=P(2n?Xn??n?≤x+22n?x2?)
當n→∞n\to \inftyn→∞時,Xn?n2n→dN(0,1)\frac{X_n-n}{\sqrt{2n}} \to_d N(0,1)2n?Xn??n?→d?N(0,1),x222n→0\frac{x^2}{2\sqrt{2n}} \to 022n?x2?→0,因此2Xn?2n→dN(0,1)\sqrt{2X_n}-\sqrt{2n} \to_d N(0,1)2Xn???2n?→d?N(0,1)
性質3,中心化的卡方分布的可加性根據gamma分布的可加性可以直接得到,下面考慮非中心化的卡方分布的可加性,兩兩可加推廣到有限可加是非常平凡的,這里證明兩兩可加的情況:因為Y1,Y2Y_1,Y_2Y1?,Y2?是互相獨立的,因此
fY1+Y2(y)=fY1?fY2(y)=∫z=0yfY1(y?z)fY2(z)dzf_{Y_1+Y_2}(y) = f_{Y_1}*f_{Y_2}(y) = \int_{z=0}^{y}f_{Y_1}(y-z)f_{Y_2}(z)dzfY1?+Y2??(y)=fY1???fY2??(y)=∫z=0y?fY1??(y?z)fY2??(z)dz
經過上一講對非中心化卡方分布的介紹,相信大家對它的密度函數已經駕輕就熟了,我們把被積函數寫出來
fY1(y?z)fY2(z)=(e?δ12+y?z2∑i=0∞δ12i2ii!(y?z)i+n1/2?12i+n1/2Γ(i+n1/2))(e?δ22+z2∑j=0∞δ22j2jj!zj+n2/2?12j+n2/2Γ(j+n2/2))f_{Y_1}(y-z)f_{Y_2}(z) = \left( e^{-\frac{\delta_1^2+y-z}{2}}\sum_{i=0}^{\infty}\frac{\delta_1^{2i}}{2^ii!} \frac{(y-z)^{i+n_1/2-1}}{2^{i+n_1/2}\Gamma(i+n_1/2)} \right) \left( e^{-\frac{\delta_2^2+z}{2}}\sum_{j=0}^{\infty}\frac{\delta_2^{2j}}{2^jj!} \frac{z^{j+n_2/2-1}}{2^{j+n_2/2}\Gamma(j+n_2/2)} \right)fY1??(y?z)fY2??(z)=(e?2δ12?+y?z?i=0∑∞?2ii!δ12i??2i+n1?/2Γ(i+n1?/2)(y?z)i+n1?/2?1?)(e?2δ22?+z?j=0∑∞?2jj!δ22j??2j+n2?/2Γ(j+n2?/2)zj+n2?/2?1?)
雖然看上去很嚇人但不要慌,需要的技巧我們在上一講已經學會了——構造beta函數求積。先把上面的式子展開,
RHS=e?(δ12+δ22)+y2∑i,j=0∞δ12iδ22j2i+ji!j!(y?z)i+n1/2?1zj+n2/2?12i+j+(n1+n2)/2Γ(i+n1/2)Γ(j+n2/2)fY1+Y2(y)=e?(δ12+δ22)+y2∑i,j=0∞δ12iδ22j2i+ji!j!∫0y(y?z)i+n1/2?1zj+n2/2?1dz2i+j+(n1+n2)/2Γ(i+n1/2)Γ(j+n2/2)RHS = e^{-\frac{(\delta_1^2+ \delta^2_2)+y}{2}}\sum_{i,j=0}^{\infty} \frac{\delta_1^{2i}\delta_2^{2j}}{2^{i+j}i!j!} \frac{(y-z)^{i+n_1/2-1}z^{j+n_2/2-1}}{2^{i+j+(n_1+n_2)/2}\Gamma(i+n_1/2)\Gamma(j+n_2/2)} \\ f_{Y_1+Y_2}(y) = e^{-\frac{(\delta_1^2+ \delta^2_2)+y}{2}}\sum_{i,j=0}^{\infty} \frac{\delta_1^{2i}\delta_2^{2j}}{2^{i+j}i!j!} \frac{\int_{0}^y(y-z)^{i+n_1/2-1}z^{j+n_2/2-1}dz}{2^{i+j+(n_1+n_2)/2}\Gamma(i+n_1/2)\Gamma(j+n_2/2)}RHS=e?2(δ12?+δ22?)+y?i,j=0∑∞?2i+ji!j!δ12i?δ22j??2i+j+(n1?+n2?)/2Γ(i+n1?/2)Γ(j+n2?/2)(y?z)i+n1?/2?1zj+n2?/2?1?fY1?+Y2??(y)=e?2(δ12?+δ22?)+y?i,j=0∑∞?2i+ji!j!δ12i?δ22j??2i+j+(n1?+n2?)/2Γ(i+n1?/2)Γ(j+n2?/2)∫0y?(y?z)i+n1?/2?1zj+n2?/2?1dz?
令t=z/yt=z/yt=z/y,則
∫0y(y?z)i+n1/2?1zj+n2/2?1dz=yi+j+(n1+n2)/2?1∫01(1?t)i+n1/2?1tj+n2/2?1dz=yi+j+(n1+n2)/2?1B(i+n1/2,j+n2/2)=yi+j+(n1+n2)/2?1Γ(i+n1/2)Γ(j+n2/3)Γ(i+j+(n1+n2)/2)\int_{0}^y(y-z)^{i+n_1/2-1}z^{j+n_2/2-1}dz = y^{i+j+(n_1+n_2)/2-1}\int_{0}^1 (1-t)^{i+n_1/2-1}t^{j+n_2/2-1}dz \\ = y^{i+j+(n_1+n_2)/2-1}B(i+n_1/2,j+n_2/2) =y^{i+j+(n_1+n_2)/2-1}\frac{\Gamma(i+n_1/2)\Gamma(j+n_2/3)}{\Gamma(i+j+(n_1+n_2)/2)}∫0y?(y?z)i+n1?/2?1zj+n2?/2?1dz=yi+j+(n1?+n2?)/2?1∫01?(1?t)i+n1?/2?1tj+n2?/2?1dz=yi+j+(n1?+n2?)/2?1B(i+n1?/2,j+n2?/2)=yi+j+(n1?+n2?)/2?1Γ(i+j+(n1?+n2?)/2)Γ(i+n1?/2)Γ(j+n2?/3)?
帶回到fY1+Y2(y)f_{Y_1+Y_2}(y)fY1?+Y2??(y)的表達式中,
fY1+Y2(y)=e?(δ12+δ22)+y2∑i,j=0∞δ12iδ22j2i+ji!j!∫0y(y?z)i+n1/2?1zj+n2/2?1dz2i+j+(n1+n2)/2Γ(i+n1/2)Γ(j+n2/2)=e?(δ12+δ22)+y2∑i,j=0∞δ12iδ22j2i+ji!j!yi+j+(n1+n2)/2?12i+j+(n1+n2)/2Γ(i+j+(n1+n2)/2)f_{Y_1+Y_2}(y) = e^{-\frac{(\delta_1^2+ \delta^2_2)+y}{2}}\sum_{i,j=0}^{\infty} \frac{\delta_1^{2i}\delta_2^{2j}}{2^{i+j}i!j!} \frac{\int_{0}^y(y-z)^{i+n_1/2-1}z^{j+n_2/2-1}dz}{2^{i+j+(n_1+n_2)/2}\Gamma(i+n_1/2)\Gamma(j+n_2/2)} \\ = e^{-\frac{(\delta_1^2+ \delta^2_2)+y}{2}}\sum_{i,j=0}^{\infty} \frac{\delta_1^{2i}\delta_2^{2j}}{2^{i+j}i!j!} \frac{y^{i+j+(n_1+n_2)/2-1}}{2^{i+j+(n_1+n_2)/2}\Gamma(i+j+(n_1+n_2)/2)}fY1?+Y2??(y)=e?2(δ12?+δ22?)+y?i,j=0∑∞?2i+ji!j!δ12i?δ22j??2i+j+(n1?+n2?)/2Γ(i+n1?/2)Γ(j+n2?/2)∫0y?(y?z)i+n1?/2?1zj+n2?/2?1dz?=e?2(δ12?+δ22?)+y?i,j=0∑∞?2i+ji!j!δ12i?δ22j??2i+j+(n1?+n2?)/2Γ(i+j+(n1?+n2?)/2)yi+j+(n1?+n2?)/2?1?
接下來重新安排一下求和的指標,因為{(i,j):i,j=0,1,?}\{(i,j):i,j=0,1,\cdots\}{(i,j):i,j=0,1,?}的勢和{k=0,1,?}\{k=0,1,\cdots\}{k=0,1,?}是一樣的,不妨記i+j=ki+j=ki+j=k,而δ12iδ22ji!j!\frac{\delta_1^{2i}\delta_2^{2j}}{i! j!}i!j!δ12i?δ22j??正好是多項式(δ12+δ22)k(\delta_1^2 + \delta_2^2)^k(δ12?+δ22?)k展開的第i,ji,ji,j項,定義
n=∑i=1mni,δ2=∑i=1nδi2n = \sum_{i=1}^m n_i, \delta^2 = \sum_{i=1}^n \delta_i^2n=i=1∑m?ni?,δ2=i=1∑n?δi2?
上式可以化簡為
fY1+Y2(y)=e?(δ12+δ22)+y2∑k=0∞(δ12+δ22)k2kk!yk+(n1+n2)/2?12k+(n1+n2)/2Γ(k+(n1+n2)/2)=e?δ2+y2∑k=0∞δ2k2kk!yk+n/2?12k+n/2Γ(k+n/2)f_{Y_1+Y_2}(y) = e^{-\frac{(\delta_1^2+ \delta^2_2)+y}{2}}\sum_{k=0}^{\infty} \frac{(\delta_1^2 + \delta_2^2)^k}{2^{k}k!} \frac{y^{k+(n_1+n_2)/2-1}}{2^{k+(n_1+n_2)/2}\Gamma(k+(n_1+n_2)/2)} \\ = e^{-\frac{\delta^2+y}{2}}\sum_{k=0}^{\infty} \frac{\delta^{2k}}{2^{k}k!} \frac{y^{k+n/2-1}}{2^{k+n/2}\Gamma(k+n/2)}fY1?+Y2??(y)=e?2(δ12?+δ22?)+y?k=0∑∞?2kk!(δ12?+δ22?)k?2k+(n1?+n2?)/2Γ(k+(n1?+n2?)/2)yk+(n1?+n2?)/2?1?=e?2δ2+y?k=0∑∞?2kk!δ2k?2k+n/2Γ(k+n/2)yk+n/2?1?
顯然Y1+Y2~χn,δ2Y_1 + Y_2 \sim \chi^2_{n,\delta}Y1?+Y2?~χn,δ2?
總結
以上是生活随笔為你收集整理的UA MATH564 概率论VI 数理统计基础3 卡方分布中的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 矩阵分析与多元统计12 0-1矩阵 交换
- 下一篇: 矩阵分析与多元统计12 0-1矩阵 交换