矩阵分析与多元统计11 Kronecker乘积
矩陣分析與多元統計11 Kronecker乘積
- Kronecker乘積
- vec算子與devec算子
Kronecker乘積
定義 數域FFF中,A=(aij)∈Fm×n,B∈Fp×qA = (a_{ij}) \in F^{m \times n},B \in F^{p \times q}A=(aij?)∈Fm×n,B∈Fp×q,定義Kronecker乘積為
?:Fm×n×Fp×q→Fmp×nqA?B=[a11B?a1nB???am1B?amnB]\otimes : F^{m \times n} \times F^{p \times q} \to F^{mp \times nq} \\ A \otimes B = \left[ \begin{matrix} a_{11}B & \cdots & a_{1n}B \\ \cdots & \cdots & \cdots \\ a_{m1}B & \cdots & a_{mn}B \\ \end{matrix} \right]?:Fm×n×Fp×q→Fmp×nqA?B=???a11?B?am1?B?????a1n?B?amn?B????
關于Kronecker乘積有一些簡單的性質:
Kronecker乘積一般是不具有交換性的。這些性質都非常直觀,我就不證明了。
vec算子與devec算子
假設A∈Fm×nA \in F^{m \times n}A∈Fm×n,aja_jaj?是它的第jjj列,則vec算子的定義是:
vec:Fm×n→Fmn×1vec(A)=[a1′,?,an′]′vec:F^{m \times n} \to F^{mn \times 1} \\ vec(A) = [a_1',\cdots,a_n']'vec:Fm×n→Fmn×1vec(A)=[a1′?,?,an′?]′
假設aia^iai是AAA的第iii行,則devec算子的定義是:
devec:Fm×n→F1×mndevec(A)=[a1,?,am]devec: F^{m \times n} \to F^{1 \times mn} \\ devec(A) = [a^1,\cdots,a^m]devec:Fm×n→F1×mndevec(A)=[a1,?,am]
下面所有的上標均表示行,下標均表示列。根據這兩個算子的定義,他們有如下關系:
[vec(A)]′=devec(A′),vec(A′)=[devec(A)]′[vec(A)]' = devec(A'),\ vec(A') = [devec(A)]'[vec(A)]′=devec(A′),?vec(A′)=[devec(A)]′
下面是vec算子、devec算子與Kronecker乘積的性質:
證明
性質1與性質4比較直觀,此處略去證明。
性質2。假設A∈Fm×r,B∈Fr×l,C∈Fl×nA \in F^{m \times r},B \in F^{r \times l},C \in F^{l \times n}A∈Fm×r,B∈Fr×l,C∈Fl×n,則vec(ABC)∈Fmn×1,C′?A∈Fmn×rl,vec(B)∈Frl×1vec(ABC) \in F^{mn \times 1},C'\otimes A \in F^{mn \times rl},vec(B) \in F^{rl \times 1}vec(ABC)∈Fmn×1,C′?A∈Fmn×rl,vec(B)∈Frl×1。vec(ABC)vec(ABC)vec(ABC)的第iii個元素是ABCABCABC的第[i/m][i/m][i/m]列,第i?[i/m]i-[i/m]i?[i/m]行,其中[i/m][i/m][i/m]表示不大于i/mi/mi/m的最大整數,所以這個元素可以表示為
∑k=1l(ai?[i/m]bk)c[i/m]k\sum_{k=1}^l (a^{i-[i/m]}b_k)c^k_{[i/m]}k=1∑l?(ai?[i/m]bk?)c[i/m]k?
(C′?A)vec(B)(C' \otimes A)vec(B)(C′?A)vec(B)的第iii個元素是C′?AC' \otimes AC′?A的第iii行與vec(B)vec(B)vec(B)的乘積,
∑k=1l(c[i/m]kai?[i/m])bk=∑k=1l(ai?[i/m]bk)c[i/m]k\sum_{k=1}^l (c^k_{[i/m]}a^{i-[i/m]})b_k =\sum_{k=1}^l (a^{i-[i/m]}b_k)c^k_{[i/m]}k=1∑l?(c[i/m]k?ai?[i/m])bk?=k=1∑l?(ai?[i/m]bk?)c[i/m]k?
因此vec(ABC)=(C′?A)vec(B)vec(ABC) = (C' \otimes A)vec(B)vec(ABC)=(C′?A)vec(B)
類似地,devec(ABC)∈F1×mn,devec(B)∈F1×rl,A′?C∈Frl×mndevec(ABC) \in F^{1 \times mn},devec(B)\in F^{1\times rl},A'\otimes C \in F^{rl \times mn}devec(ABC)∈F1×mn,devec(B)∈F1×rl,A′?C∈Frl×mn,devec(ABC)devec(ABC)devec(ABC)的第iii個元素是ABCABCABC的第[i/n][i/n][i/n]行,第i?[i/n]i-[i/n]i?[i/n]列:
∑k=1l(a[i/n]bk)ci?[i/n]k=∑k=1l∑j=1r(a[i/n],jbkj)ci?[i/n]k\sum_{k=1}^l (a^{[i/n]}b_k)c^k_{i-[i/n]} = \sum_{k=1}^l \sum_{j=1}^r (a_{[i/n],j}b^j_{k})c^k_{i-[i/n]}k=1∑l?(a[i/n]bk?)ci?[i/n]k?=k=1∑l?j=1∑r?(a[i/n],j?bkj?)ci?[i/n]k?
devec(B)(A′?C)devec(B)(A'\otimes C)devec(B)(A′?C)的iii個元素是
∑j=1r∑k=1lbkj(a[i/n],jci?[i/n]k)=∑k=1l∑j=1r(a[i/n],jbkj)ci?[i/n]k\sum_{j=1}^r \sum_{k=1}^l b^j_{k} (a_{[i/n],j}c^k_{i-[i/n]}) =\sum_{k=1}^l \sum_{j=1}^r (a_{[i/n],j}b^j_{k})c^k_{i-[i/n]}j=1∑r?k=1∑l?bkj?(a[i/n],j?ci?[i/n]k?)=k=1∑l?j=1∑r?(a[i/n],j?bkj?)ci?[i/n]k?
因此devec(ABC)=[vec(B′)]′(A′?C)=devec(B)(A′?C)devec(ABC) = [vec(B')]'(A' \otimes C) = devec(B)(A' \otimes C)devec(ABC)=[vec(B′)]′(A′?C)=devec(B)(A′?C)
性質3。應用性質2,取B=C=InB=C=I_nB=C=In?,則
vec(A)=vec(ABC)=(In?A)vec(In)vec(A)=vec(ABC) = (I_n \otimes A)vec(I_n)vec(A)=vec(ABC)=(In??A)vec(In?)
或者記CCC為AAA,A,BA,BA,B為ImI_mIm?,則
vec(A)=vec(ImImA)=(A′?Im)vec(Im)vec(A) = vec(I_mI_mA) = (A'\otimes I_m)vec(I_m)vec(A)=vec(Im?Im?A)=(A′?Im?)vec(Im?)
devec算子的兩個等式類似。
性質5。假設A∈Fm×n,B∈Fn×mA \in F^{m \times n},B \in F^{n \times m}A∈Fm×n,B∈Fn×m
tr(AB)=∑i=1maibitr(AB) = \sum_{i = 1}^m a^ib_itr(AB)=i=1∑m?aibi?
根據性質4,
devec(A)vec(B)=∑i=1maibi=tr(AB)devec(A)vec(B) = \sum_{i = 1}^m a^ib_i = tr(AB)devec(A)vec(B)=i=1∑m?aibi?=tr(AB)
假設A∈Fm×r,B∈Fr×l,C∈Fl×mA \in F^{m \times r},B \in F^{r \times l},C \in F^{l \times m}A∈Fm×r,B∈Fr×l,C∈Fl×m,則
tr(ABC)=∑i=1m(∑k=1l(aibk)cik)=∑i=1m∑k=1laibkcik=∑i=1m∑k=1l∑j=1rajibkjciktr(ABC) = \sum_{i = 1}^m \left( \sum_{k=1}^l (a^{i}b_k)c^k_{i} \right) = \sum_{i=1}^m \sum_{k=1}^l a^ib_kc_{i}^k = \sum_{i=1}^m \sum_{k=1}^l \sum_{j=1}^r a^i_jb^j_kc_{i}^ktr(ABC)=i=1∑m?(k=1∑l?(aibk?)cik?)=i=1∑m?k=1∑l?aibk?cik?=i=1∑m?k=1∑l?j=1∑r?aji?bkj?cik?
devec(A)∈F1×mr,vec(BC)∈Frm×1,devec(AB)∈F1×ml,vec(C)∈Flm×1devec(A) \in F^{1 \times mr},vec(BC) \in F^{rm \times 1},devec(AB) \in F^{1 \times ml},vec(C) \in F^{lm \times 1}devec(A)∈F1×mr,vec(BC)∈Frm×1,devec(AB)∈F1×ml,vec(C)∈Flm×1,
devec(A)vec(BC)=∑i=1m∑j=1raji∑k=1lbkjcik=∑i=1m∑k=1l∑j=1rajibkjcikdevec(AB)vec(C)=∑i=1m∑k=1lcik∑j=1rajibkj=∑i=1m∑k=1l∑j=1rajibkjcikdevec(A)vec(BC) = \sum_{i=1}^m \sum_{j=1}^r a^i_j \sum_{k=1}^l b_k^j c^k_i = \sum_{i=1}^m \sum_{k=1}^l \sum_{j=1}^r a^i_jb^j_kc_{i}^k \\ devec(AB)vec(C) = \sum_{i=1}^m \sum_{k=1}^l c_i^k \sum_{j=1}^r a_j^i b_k^j = \sum_{i=1}^m \sum_{k=1}^l \sum_{j=1}^r a^i_jb^j_kc_{i}^kdevec(A)vec(BC)=i=1∑m?j=1∑r?aji?k=1∑l?bkj?cik?=i=1∑m?k=1∑l?j=1∑r?aji?bkj?cik?devec(AB)vec(C)=i=1∑m?k=1∑l?cik?j=1∑r?aji?bkj?=i=1∑m?k=1∑l?j=1∑r?aji?bkj?cik?
因此tr(ABC)=devec(A)vec(BC)=devec(AB)vec(C)tr(ABC) = devec(A)vec(BC) = devec(AB)vec(C) tr(ABC)=devec(A)vec(BC)=devec(AB)vec(C)
證畢
總結
以上是生活随笔為你收集整理的矩阵分析与多元统计11 Kronecker乘积的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 矩阵分析与多元统计1 线性空间与线性变换
- 下一篇: UA MATH564 概率论VI 数理统