UA MATH566 统计理论1 充分统计量例题答案2
UA MATH566 統計理論1 充分統計量例題答案2
例1.12 找N(θ,1)N(\theta,1)N(θ,1)的最小充分統計量
計算樣本的聯合密度
f(x∣θ)=∏i=1n12πexp?(?(xi?θ)22)=(2π)?n/2exp?(?12∑i=1n(xi?θ)2)=(2π)?n/2exp?(?12∑i=1nxi2+θ∑i=1nxi?nθ22)f(x|\theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp(-\frac{(x_i-\theta)^2}{2}) \\ = (2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i=1}^n (x_i - \theta)^2) \\ = (2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i=1}^n x_i^2+\theta \sum_{i=1}^n x_i-\frac{n \theta^2}{2}) f(x∣θ)=i=1∏n?2π?1?exp(?2(xi??θ)2?)=(2π)?n/2exp(?21?i=1∑n?(xi??θ)2)=(2π)?n/2exp(?21?i=1∑n?xi2?+θi=1∑n?xi??2nθ2?)
計算(X,Y)(X,Y)(X,Y)兩組樣本聯合密度的比值
f(x∣θ)f(y∣θ)=(2π)?n/2exp?(?12∑i=1nxi2+θ∑i=1nxi?nθ22)(2π)?n/2exp?(?12∑i=1nxi2+θ∑i=1nxi?nθ22)=exp?(?12∑i=1nxi2+θ∑i=1nxi)exp?(?12∑i=1nyi2+θ∑i=1nyi)=exp?(?12∑i=1nxi2)exp?(?12∑i=1nyi2)eθ(∑i=1nxi?∑i=1nyi)\frac{f(x|\theta)}{f(y|\theta)} = \frac{(2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i=1}^n x_i^2+\theta \sum_{i=1}^n x_i-\frac{n \theta^2}{2}) }{(2\pi)^{-n/2} \exp(-\frac{1}{2} \sum_{i=1}^n x_i^2+\theta \sum_{i=1}^n x_i-\frac{n \theta^2}{2}) } \\ = \frac{\exp(-\frac{1}{2} \sum_{i=1}^n x_i^2+\theta \sum_{i=1}^n x_i) } { \exp(-\frac{1}{2} \sum_{i=1}^n y_i^2+\theta \sum_{i=1}^n y_i )} = \frac{\exp(-\frac{1}{2} \sum_{i=1}^n x_i^2) } { \exp(-\frac{1}{2} \sum_{i=1}^n y_i^2)}e^{\theta(\sum_{i=1}^n x_i-\sum_{i=1}^n y_i)} f(y∣θ)f(x∣θ)?=(2π)?n/2exp(?21?∑i=1n?xi2?+θ∑i=1n?xi??2nθ2?)(2π)?n/2exp(?21?∑i=1n?xi2?+θ∑i=1n?xi??2nθ2?)?=exp(?21?∑i=1n?yi2?+θ∑i=1n?yi?)exp(?21?∑i=1n?xi2?+θ∑i=1n?xi?)?=exp(?21?∑i=1n?yi2?)exp(?21?∑i=1n?xi2?)?eθ(∑i=1n?xi??∑i=1n?yi?)
顯然要讓這個比值與θ\thetaθ無關,除非讓∑i=1nxi?∑i=1nyi=0\sum_{i=1}^n x_i-\sum_{i=1}^n y_i=0∑i=1n?xi??∑i=1n?yi?=0,因此最小充分統計量是T(X)=∑i=1nXiT(X)=\sum_{i=1}^n X_iT(X)=∑i=1n?Xi?。
例1.13 找Γ(α,β)\Gamma(\alpha,\beta)Γ(α,β)的最小充分統計量
計算樣本的聯合概率密度
f(x∣α,β)=∏i=1nβαΓ(α)xiα?1e?βxi=(βαΓ(α))n(∏i=1nxi)α?1e?β∑i=1nxif(x|\alpha,\beta) = \prod_{i=1}^n \frac{\beta^{\alpha}}{\Gamma{(\alpha)}}x_i^{\alpha-1}e^{-\beta x_i} = (\frac{\beta^{\alpha}}{\Gamma{(\alpha)}})^n (\prod_{i=1}^n x_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n x_i} f(x∣α,β)=i=1∏n?Γ(α)βα?xiα?1?e?βxi?=(Γ(α)βα?)n(i=1∏n?xi?)α?1e?β∑i=1n?xi?
計算(X,Y)(X,Y)(X,Y)兩組樣本聯合密度的比值
f(x∣α,β)f(y∣α,β)=(βαΓ(α))n(∏i=1nxi)α?1e?β∑i=1nxi(βαΓ(α))n(∏i=1nyi)α?1e?β∑i=1nyi=(∏i=1nxi)α?1e?β∑i=1nxi(∏i=1nyi)α?1e?β∑i=1nyi=(∏i=1nxi∏i=1nyi)α?1e?β(∑i=1nxi?∑i=1nyi)\frac{f(x|\alpha,\beta)}{f(y|\alpha,\beta)} = \frac{(\frac{\beta^{\alpha}}{\Gamma{(\alpha)}})^n (\prod_{i=1}^n x_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n x_i}}{(\frac{\beta^{\alpha}}{\Gamma{(\alpha)}})^n (\prod_{i=1}^n y_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n y_i}} \\ = \frac{ (\prod_{i=1}^n x_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n x_i}}{ (\prod_{i=1}^n y_i)^{\alpha-1}e^{-\beta \sum_{i=1}^n y_i}} = (\frac{\prod_{i=1}^n x_i} {\prod_{i=1}^n y_i})^{\alpha-1}e^{-\beta (\sum_{i=1}^n x_i-\sum_{i=1}^n y_i}) f(y∣α,β)f(x∣α,β)?=(Γ(α)βα?)n(∏i=1n?yi?)α?1e?β∑i=1n?yi?(Γ(α)βα?)n(∏i=1n?xi?)α?1e?β∑i=1n?xi??=(∏i=1n?yi?)α?1e?β∑i=1n?yi?(∏i=1n?xi?)α?1e?β∑i=1n?xi??=(∏i=1n?yi?∏i=1n?xi??)α?1e?β(∑i=1n?xi??∑i=1n?yi?)
要讓這個比率與參數α,β\alpha,\betaα,β無關,除非∏i=1nxi=∏i=1nyi\prod_{i=1}^n x_i=\prod_{i=1}^n y_i∏i=1n?xi?=∏i=1n?yi?,∑i=1nxi=∑i=1nyi\sum_{i=1}^n x_i=\sum_{i=1}^n y_i∑i=1n?xi?=∑i=1n?yi?,所以最小充分統計量是(∏i=1nXi,∑i=1nXi)(\prod_{i=1}^n X_i,\sum_{i=1}^n X_i)(∏i=1n?Xi?,∑i=1n?Xi?)
例1.14 X1,?,Xn~iidU(θ1,θ2)X_1,\cdots,X_n \sim_{iid} U(\theta_1,\theta_2)X1?,?,Xn?~iid?U(θ1?,θ2?),找最小充分統計量
計算樣本的聯合概率密度
f(x∣θ1,θ2)=∏i=1nI(θ1≤xi≤θ2)θ1?θ2=(θ1?θ2)?n∏i=1nI(xi≥θ1)I(xi≤θ2)=(θ1?θ2)?nI(x(1)≥θ1)I(x(n)≤θ2)f(x|\theta_1,\theta_2) = \prod_{i=1}^n \frac{I(\theta_1 \le x_i \le \theta_2)}{\theta_1-\theta_2} \\= (\theta_1-\theta_2)^{-n} \prod_{i=1}^n I(x_i \ge \theta_1)I(x_i \le \theta_2) \\ = (\theta_1-\theta_2)^{-n} I(x_{(1)} \ge \theta_1)I(x_{(n)} \le \theta_2) f(x∣θ1?,θ2?)=i=1∏n?θ1??θ2?I(θ1?≤xi?≤θ2?)?=(θ1??θ2?)?ni=1∏n?I(xi?≥θ1?)I(xi?≤θ2?)=(θ1??θ2?)?nI(x(1)?≥θ1?)I(x(n)?≤θ2?)
計算(X,Y)(X,Y)(X,Y)兩組樣本聯合密度的比值
f(x∣θ1,θ2)f(y∣θ1,θ2)=(θ1?θ2)?nI(x(1)≥θ1)I(x(n)≤θ2)(θ1?θ2)?nI(y(1)≥θ1)I(y(n)≤θ2)=I(x(1)≥θ1)I(x(n)≤θ2)I(y(1)≥θ1)I(y(n)≤θ2)\frac{f(x|\theta_1,\theta_2)}{f(y|\theta_1,\theta_2)} = \frac{(\theta_1-\theta_2)^{-n} I(x_{(1)} \ge \theta_1)I(x_{(n)} \le \theta_2)}{(\theta_1-\theta_2)^{-n} I(y_{(1)} \ge \theta_1)I(y_{(n)} \le \theta_2)} = \frac{I(x_{(1)} \ge \theta_1)I(x_{(n)} \le \theta_2)}{I(y_{(1)} \ge \theta_1)I(y_{(n)} \le \theta_2)} f(y∣θ1?,θ2?)f(x∣θ1?,θ2?)?=(θ1??θ2?)?nI(y(1)?≥θ1?)I(y(n)?≤θ2?)(θ1??θ2?)?nI(x(1)?≥θ1?)I(x(n)?≤θ2?)?=I(y(1)?≥θ1?)I(y(n)?≤θ2?)I(x(1)?≥θ1?)I(x(n)?≤θ2?)?
如果x(1)=y(1),x(n)=y(n)x_{(1)}=y_{(1)},x_{(n)}=y_{(n)}x(1)?=y(1)?,x(n)?=y(n)?,分子分母的值就會完全相同,這個比率就與參數無關,因此最小充分統計量是(X(1),X(n))(X_{(1)},X_{(n)})(X(1)?,X(n)?)。
例1.15 X1,?,Xn~iidf(x∣θ)=e?(x?θ)(1+e?(x?θ))2X_1,\cdots,X_n \sim_{iid} f(x|\theta)=\frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2}X1?,?,Xn?~iid?f(x∣θ)=(1+e?(x?θ))2e?(x?θ)?,找最小充分統計量
計算樣本的聯合概率密度
f(x∣θ)=∏i=1ne?(xi?θ)(1+e?(xi?θ))2=e?∑i=1nxi+nθ[∏i=1n(1+e?(xi?θ))]2f(x|\theta) = \prod_{i=1}^n \frac{e^{-(x_i-\theta)}}{(1+e^{-(x_i-\theta)})^2} = \frac{e^{-\sum_{i=1}^n x_i +n\theta}}{ [\prod_{i=1}^n (1+e^{-(x_i-\theta)})]^2 } f(x∣θ)=i=1∏n?(1+e?(xi??θ))2e?(xi??θ)?=[∏i=1n?(1+e?(xi??θ))]2e?∑i=1n?xi?+nθ?
計算(X,Y)(X,Y)(X,Y)兩組樣本聯合密度的比值
f(x∣θ)f(y∣θ)=e?∑i=1nxi+nθe?∑i=1nyi+nθ[∏i=1n(1+e?(yi?θ))∏i=1n(1+e?(xi?θ))]2\frac{f(x|\theta)}{f(y|\theta)} = \frac{e^{-\sum_{i=1}^n x_i +n\theta}}{e^{-\sum_{i=1}^n y_i +n\theta}} [\frac{\prod_{i=1}^n (1+e^{-(y_i-\theta)})}{\prod_{i=1}^n (1+e^{-(x_i-\theta)})}]^2 f(y∣θ)f(x∣θ)?=e?∑i=1n?yi?+nθe?∑i=1n?xi?+nθ?[∏i=1n?(1+e?(xi??θ))∏i=1n?(1+e?(yi??θ))?]2
第一個因子顯然與參數θ\thetaθ無關,第二個因子只要平方內的式子與參數無關,這個比值就會與參數無關。然而要做的這點,除非?k\exists k?k是常數,滿足
1+e?(yi?θ)=(1+e?(xi?θ))k1+e^{-(y_i-\theta)} = (1+e^{-(x_i-\theta)})k 1+e?(yi??θ)=(1+e?(xi??θ))k
這個關系貌似看不出統計量來,但事實上這個函數是單調的,因此滿足這個關系的一定是次序統計量,所以這個分布的最小充分統計量是(X(1),X(2),?,X(n))(X_{(1)},X_{(2)},\cdots,X_{(n)})(X(1)?,X(2)?,?,X(n)?)。
例1.16 X1,?,Xn~iidU(0,θ)X_1,\cdots,X_n \sim_{iid} U(0,\theta)X1?,?,Xn?~iid?U(0,θ),驗證T(X)=X(n)T(X)=X_{(n)}T(X)=X(n)?是完備統計量。
例1.2已經計算過T(X)T(X)T(X)的密度了
f(t)=ntn?1θ?nI(0≤t≤θ)f(t) = nt^{n-1} \theta^{-n}I(0 \le t \le \theta) f(t)=ntn?1θ?nI(0≤t≤θ)
對任一可測函數h(T(X))h(T(X))h(T(X))
E[h(T(X))]=∫h(t)ntn?1θ?nI(0≤t≤θ)dt=0?∫0θh(t)tn?1dt=0???θ∫0θh(t)tn?1dt?h(θ)θn?1=0?h(θ)=0E[h(T(X))] = \int h(t) nt^{n-1} \theta^{-n}I(0 \le t \le \theta) dt = 0 \\ \Leftrightarrow \int_0^{\theta} h(t) t^{n-1} dt = 0 \Rightarrow \frac{\partial}{\partial \theta} \int_0^{\theta} h(t) t^{n-1} dt \\ \Rightarrow h(\theta) \theta^{n-1}=0 \Rightarrow h(\theta) = 0 E[h(T(X))]=∫h(t)ntn?1θ?nI(0≤t≤θ)dt=0?∫0θ?h(t)tn?1dt=0??θ??∫0θ?h(t)tn?1dt?h(θ)θn?1=0?h(θ)=0
因此T(X)=X(n)T(X)=X_{(n)}T(X)=X(n)?是完備統計量。
例1.17 X1,?,Xn~iidN(0,σ2)X_1,\cdots,X_n \sim_{iid} N(0,\sigma^2)X1?,?,Xn?~iid?N(0,σ2),驗證T(X)=X2T(X)=X^2T(X)=X2是完備統計量。
因為T(X)/σ2~χ2(1)T(X)/\sigma^2 \sim \chi^2(1)T(X)/σ2~χ2(1),所以它的概率密度為
f(t)=σ22πt?1/2e?t/2f(t) = \frac{\sigma^2}{2\sqrt{\pi}} t^{-1/2}e^{-t/2} f(t)=2π?σ2?t?1/2e?t/2
對任一可測函數h(T(X))h(T(X))h(T(X))
E[h(T(X))]=∫h(t)σ22πt?1/2e?t/2dt=0?∫h(t)t?1/2e?t/2dt=0E[h(T(X))] = \int h(t) \frac{\sigma^2}{2\sqrt{\pi}} t^{-1/2}e^{-t/2} dt = 0 \\ \Leftrightarrow \int h(t) t^{-1/2}e^{-t/2} dt = 0 E[h(T(X))]=∫h(t)2π?σ2?t?1/2e?t/2dt=0?∫h(t)t?1/2e?t/2dt=0
上式是函數h(t)/th(t)/\sqrt{t}h(t)/t?的Laplace變換在1/2處的取值,因為Laplace是具有唯一性的積分變換(或者根據Laplace變換的反演公式),所以h(t)/t=0h(t)/\sqrt{t}=0h(t)/t?=0。因此T(X)=X2T(X)=X^2T(X)=X2是完備統計量。
總結
以上是生活随笔為你收集整理的UA MATH566 统计理论1 充分统计量例题答案2的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH566 统计理论4 贝叶斯
- 下一篇: UA MATH571A 一元线性回归II