数据的描述统计量
一、本文簡介
一組樣本數據分布的數值特診可以從三個方面進行描述:
1、數據的水平:也稱為集中趨勢或位置度量,反應全部數據的數值大小。
2、數據的差異:反應數據間的離散程度。
3、分布的形狀:反應數據分布的偏度和峰度。
本文基于R實現描述數據的各統計量的計算方法。
?
二、描述水平的統計量
> head(iris[,-5],20)Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 4 4.6 3.1 1.5 0.2 5 5.0 3.6 1.4 0.2 6 5.4 3.9 1.7 0.4 7 4.6 3.4 1.4 0.3 8 5.0 3.4 1.5 0.2 9 4.4 2.9 1.4 0.2 10 4.9 3.1 1.5 0.1 11 5.4 3.7 1.5 0.2 12 4.8 3.4 1.6 0.2 13 4.8 3.0 1.4 0.1 14 4.3 3.0 1.1 0.1 15 5.8 4.0 1.2 0.2 16 5.7 4.4 1.5 0.4 17 5.4 3.9 1.3 0.4 18 5.1 3.5 1.4 0.3 19 5.7 3.8 1.7 0.3 20 5.1 3.8 1.5 0.32.1、平均數
> mean(iris$Sepal.Length) [1] 5.843333
2.2、分位數
1、中位數
> median(iris$Sepal.Length) [1] 5.8?
2、四分位數
> quantile(iris$Sepal.Length,probs = c(0.25,0.75),type = 6) 25% 75% 5.1 6.4
3、百分位數
> quantile(iris$Sepal.Length,probs = c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),type = 6)10% 20% 30% 40% 50% 60% 70% 80% 90% 4.80 5.00 5.23 5.60 5.80 6.10 6.30 6.58 6.90
2.3、眾數
> which.max(table(iris$Sepal.Length)) 5 8?
三、描述差異的統計量
3.1、極差和四分位數
1、極差
> range<-max(iris$Sepal.Length)-min(iris$Sepal.Length) > range [1] 3.6?
2、四分位差
> IQR(iris$Sepal.Length,type = 6) [1] 1.3
3.2、方差和標準差
> var(iris$Sepal.Length) [1] 0.6856935 > sd(iris$Sepal.Length) [1] 0.8280661?
3.3、變異系數
> mean<-apply(iris[,1:4],1,mean) > sd<-apply(iris[,1:4],1,sd) > cv<-sd/mean > x<-data.frame("平均數"=mean,"標準差"=sd,"變異系數"=cv) > round(x,4)平均數 標準差 變異系數 1 2.550 2.1794 0.8547 2 2.375 2.0370 0.8577 3 2.350 1.9975 0.8500 4 2.350 1.9122 0.8137 5 2.550 2.1564 0.8456 6 2.850 2.2308 0.7828 7 2.425 1.9363 0.7985 8 2.525 2.1093 0.8354 9 2.225 1.8228 0.8192 10 2.400 2.0688 0.8620 11 2.700 2.3080 0.8548 12 2.500 2.0166 0.8066 13 2.325 2.0320 0.8740 14 2.125 1.8839 0.8866 15 2.800 2.5665 0.9166 16 3.000 2.4671 0.8224 17 2.750 2.3072 0.8390 18 2.575 2.1438 0.8325 19 2.875 2.3698 0.8243 20 2.675 2.1731 0.8124?
> boxplot(iris[,1:4],notch = TRUE,col = "lightblue",ylab="花瓣長度",xlab="長度")?
3.4、標準分數
> as.vector(round(scale(iris[,1:4]),4))[1] -0.8977 -1.1392 -1.3807 -1.5015 -1.0184 -0.5354 -1.5015[8] -1.0184 -1.7430 -1.1392 -0.5354 -1.2600 -1.2600 -1.8638[15] -0.0523 -0.1731 -0.5354 -0.8977 -0.1731 -0.8977 -0.5354[22] -0.8977 -1.5015 -0.8977 -1.2600 -1.0184 -1.0184 -0.7769[29] -0.7769 -1.3807 -1.2600 -0.5354 -0.7769 -0.4146 -1.1392[36] -1.0184 -0.4146 -1.1392 -1.7430 -0.8977 -1.0184 -1.6223[43] -1.7430 -1.0184 -0.8977 -1.2600 -0.8977 -1.5015 -0.6561[50] -1.0184 1.3968 0.6722 1.2761 -0.4146 0.7930 -0.1731[57] 0.5515 -1.1392 0.9138 -0.7769 -1.0184 0.0684 0.1892[64] 0.3100 -0.2939 1.0345 -0.2939 -0.0523 0.4307 -0.2939[71] 0.0684 0.3100 0.5515 0.3100 0.6722 0.9138 1.1553[78] 1.0345 0.1892 -0.1731 -0.4146 -0.4146 -0.0523 0.1892[85] -0.5354 0.1892 1.0345 0.5515 -0.2939 -0.4146 -0.4146[92] 0.3100 -0.0523 -1.0184 -0.2939 -0.1731 -0.1731 0.4307[99] -0.8977 -0.1731 0.5515 -0.0523 1.5176 0.5515 0.7930 [106] 2.1214 -1.1392 1.7591 1.0345 1.6384 0.7930 0.6722 [113] 1.1553 -0.1731 -0.0523 0.6722 0.7930 2.2422 2.2422 [120] 0.1892 1.2761 -0.2939 2.2422 0.5515 1.0345 1.6384 [127] 0.4307 0.3100 0.6722 1.6384 1.8799 2.4837 0.6722 [134] 0.5515 0.3100 2.2422 0.5515 0.6722 0.1892 1.2761 [141] 1.0345 1.2761 -0.0523 1.1553 1.0345 1.0345 0.5515 [148] 0.7930 0.4307 0.0684 1.0156 -0.1315 0.3273 0.0979 [155] 1.2450 1.9333 0.7862 0.7862 -0.3610 0.0979 1.4745 [162] 0.7862 -0.1315 -0.1315 2.1627 3.0805 1.9333 1.0156 [169] 1.7039 1.7039 0.7862 1.4745 1.2450 0.5567 0.7862 [176] -0.1315 0.7862 1.0156 0.7862 0.3273 0.0979 0.7862 [183] 2.3922 2.6216 0.0979 0.3273 1.0156 1.2450 -0.1315?
四、描述分布形狀的統計量
4.1、偏度系數
> library(agricolae) > skewness(iris$Sepal.Length) [1] 0.314911?
4.2、峰度系數
> kurtosis(iris$Sepal.Length) [1] -0.552064?
轉載于:https://www.cnblogs.com/RHadoop-Hive/p/10167495.html
《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀總結
- 上一篇: 使用UML描述需求都实现的过程
- 下一篇: 有这10个特征的项目领导者做的项目,失败