3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

关于 UDP Hole Punching 的资料

發布時間:2025/4/5 编程问答 19 豆豆
生活随笔 收集整理的這篇文章主要介紹了 关于 UDP Hole Punching 的资料 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

平時用兩臺電腦,一臺 Win, 一臺Mac,在這兩個平臺上進行文件傳送非常不方便,

原因是公司不讓用企鵝傳公司內部文件。

于是想自己寫一個傳送文件的工具,

服務器使用 GAE,開發語言可以選擇 Python 或者 Go(最近學習了下 Go,正好練練手)。

客戶端打算用 Python,至于是否帶 GUI 還沒考慮好。

寫這個程序,對于我來說主要問題在于 UDP 這塊,一個是保證正確性,一個是 UDP Hole Punching技術。

=========================================================

ref:http://www.brynosaurus.com/pub/net/p2pnat/


Peer-to-Peer Communication Across Network Address Translators

Bryan Ford
Massachusetts Institute of Technology
baford?(at)?mit.edu

Pyda Srisuresh
Caymas Systems, Inc.
srisuresh?(at)?yahoo.com

Dan Kegel
dank?(at)?kegel.com

J'fais des trous, des petits trous?
toujours des petits trous?
???? - S. Gainsbourg

Abstract:

Network Address Translation (NAT) causes well-known difficulties for peer-to-peer (P2P) communication, since the peers involved may not be reachable at any globally valid IP address. Several NAT traversal techniques are known, but their documentation is slim, and data about their robustness or relative merits is slimmer. This paper documents and analyzes one of the simplest but most robust and practical NAT traversal techniques, commonly known as “hole punching.” Hole punching is moderately well-understood for UDP communication, but we show how it can be reliably used to set up peer-to-peer TCP streams as well. After gathering data on the reliability of this technique on a wide variety of deployed NATs, we find that about 82% of the NATs tested support hole punching for UDP, and about 64% support hole punching for TCP streams. As NAT vendors become increasingly conscious of the needs of important P2P applications such as Voice over IP and online gaming protocols, support for hole punching is likely to increase in the future.

1 Introduction

The combined pressures of tremendous growth and massive security challenges have forced the Internet to evolve in ways that make life difficult for many applications. The Internet's original uniform address architecture, in which every node has a globally unique IP address and can communicate directly with every other node, has been replaced with a new?de facto?Internet address architecture, consisting of a global address realm and many private address realms interconnected by Network Address Translators (NAT). In this new address architecture, illustrated in Figure?1, only nodes in the “main,” global address realm can be easily contacted from anywhere in the network, because only they have unique, globally routable IP addresses. Nodes on private networks can connect to other nodes on the same private network, and they can usually open TCP or UDP connections to “well-known” nodes in the global address realm. NATs on the path allocate temporary public endpoints for outgoing connections, and translate the addresses and port numbers in packets comprising those sessions, while generally blocking all incoming traffic unless otherwise specifically configured.

Figure 1:?Public and private IP address domains

The Internet's new?de facto?address architecture is suitable for client/server communication in the typical case when the client is on a private network and the server is in the global address realm. The architecture makes it difficult for two nodes on?different?private networks to contact each other directly, however, which is often important to the “peer-to-peer” communication protocols used in applications such as teleconferencing and online gaming. We clearly need a way to make such protocols function smoothly in the presence of NAT.

One of the most effective methods of establishing peer-to-peer communication between hosts on different private networks is known as “hole punching.” This technique is widely used already in UDP-based applications, but essentially the same technique also works for TCP. Contrary to what its name may suggest, hole punching does not compromise the security of a private network. Instead, hole punching enables applications to function?within?the the default security policy of most NATs, effectively signaling to NATs on the path that peer-to-peer communication sessions are “solicited” and thus should be accepted. This paper documents hole punching for both UDP and TCP, and details the crucial aspects of both application and NAT behavior that make hole punching work.

Unfortunately, no traversal technique works with all existing NATs, because NAT behavior is not standardized. This paper presents some experimental results evaluating hole punching support in current NATs. Our data is derived from results submitted by users throughout the Internet by running our “NAT Check” tool over a wide variety of NATs by different vendors. While the data points were gathered from a “self-selecting” user community and may not be representative of the true distribution of NAT implementations deployed on the Internet, the results are nevertheless generally encouraging.

While evaluating basic hole punching, we also point out variations that can make hole punching work on a wider variety of existing NATs at the cost of greater complexity. Our primary focus, however, is on developing the?simplest?hole punching technique that works cleanly and robustly in the presence of “well-behaved” NATs in any reasonable network topology. We deliberately avoid excessively clever tricks that may increase compatibility with some existing “broken” NATs in the short term, but which only work some of the time and may cause additional unpredictability and network brittleness in the long term.

Although the larger address space of IPv6?[3] may eventually reduce the need for NAT, in the short term IPv6 is?increasing?the demand for NAT, because NAT itself provides the easiest way to achieve interoperability between IPv4 and IPv6 address domains?[24]. Further, the anonymity and inaccessibility of hosts on private networks has widely perceived security and privacy benefits. Firewalls are unlikely to go away even when there are enough IP addresses: IPv6 firewalls will still commonly block unsolicited incoming traffic by default, making hole punching useful even to IPv6 applications.

The rest of this paper is organized as follows. Section?2?introduces basic terminology and NAT traversal concepts. Section?3?details hole punching for UDP, and Section?4?introduces hole punching for TCP. Section?5?summarizes important properties a NAT must have in order to enable hole punching. Section?6?presents our experimental results on hole punching support in popular NATs, Section?7?discusses related work, and Section?8?concludes.

2 General Concepts

This section introduces basic NAT terminology used throughout the paper, and then outlines general NAT traversal techniques that apply equally to TCP and UDP.

2.1 NAT Terminology

This paper adopts the NAT terminology and taxonomy defined in RFC 2663?[21], as well as additional terms defined more recently in RFC 3489?[19].

Of particular importance is the notion of session. A?session endpoint?for TCP or UDP is an (IP address, port number) pair, and a particular?session?is uniquely identified by its two session endpoints. From the perspective of one of the hosts involved, a session is effectively identified by the 4-tuple (local IP, local port, remote IP, remote port). The?direction?of a session is normally the flow direction of the packet that initiates the session: the initial SYN packet for TCP, or the first user datagram for UDP.

Of the various flavors of NAT, the most common type is?traditional?or?outbound?NAT, which provides an asymmetric bridge between a private network and a public network. Outbound NAT by default allows only outbound sessions to traverse the NAT: incoming packets are dropped unless the NAT identifies them as being part of an existing session initiated from within the private network. Outbound NAT conflicts with peer-to-peer protocols because when both peers desiring to communicate are “behind” (on the private network side of) two different NATs, whichever peer tries to initiate a session, the other peer's NAT rejects it. NAT traversal entails making P2P sessions look like “outbound” sessions to?both?NATs.

Outbound NAT has two sub-varieties:?Basic NAT, which only translates IP addresses, and?Network Address/Port Translation?(NAPT), which translates entire session endpoints. NAPT, the more general variety, has also become the most common because it enables the hosts on a private network to share the use of a?single?public IP address. Throughout this paper we assume NAPT, though the principles and techniques we discuss apply equally well (if sometimes trivially) to Basic NAT.

2.2 Relaying

The most reliable--but least efficient--method of P2P communication across NAT is simply to make the communication look to the network like standard client/server communication, through relaying. Suppose two client hosts??and??have each initiated TCP or UDP connections to a well-known server?, at?'s global IP address 18.181.0.31 and port number 1234. As shown in Figure?2, the clients reside on separate private networks, and their respective NATs prevent either client from directly initiating a connection to the other. Instead of attempting a direct connection, the two clients can simply use the server??to relay messages between them. For example, to send a message to client?, client??simply sends the message to server??along its already-established client/server connection, and server??forwards the message on to client??using its existing client/server connection with?.

Figure 2:?NAT Traversal by Relaying

Relaying always works as long as both clients can connect to the server. Its disadvantages are that it consumes the server's processing power and network bandwidth, and communication latency between the peering clients is likely increased even if the server is well-connected. Nevertheless, since there is no more efficient technique that works reliably on all existing NATs, relaying is a useful fall-back strategy if maximum robustness is desired. The TURN protocol?[18] defines a method of implementing relaying in a relatively secure fashion.

2.3 Connection Reversal

Some P2P applications use a straightforward but limited technique, known as?connection reversal, to enable communication when both hosts have connections to a well-known rendezvous server??and only one of the peers is behind a NAT, as shown in Figure?3. If??wants to initiate a connection to?, then a direct connection attempt works automatically, because??is not behind a NAT and?'s NAT interprets the connection as an outgoing session. If??wants to initiate a connection to?, however, any direct connection attempt to??is blocked by?'s NAT.??can instead relay a connection request to??through a well-known server?, asking??to attempt a “reverse” connection back to?. Despite the obvious limitations of this technique, the central idea of using a well-known rendezvous server as an intermediary to help set up direct peer-to-peer connections is fundamental to the more general hole punching techniques described next.

Figure 3:?NAT Traversal by Connection Reversal

3 UDP Hole Punching

UDP hole punching enables two clients to set up a direct peer-to-peer UDP session with the help of a well-known rendezvous server, even if the clients are both behind NATs. This technique was mentioned in section 5.1 of RFC 3027?[10], documented more thoroughly elsewhere on the Web?[13], and used in recent experimental Internet protocols?[17,11]. Various proprietary protocols, such as those for on-line gaming, also use UDP hole punching.

3.1 The Rendezvous Server

Hole punching assumes that the two clients,??and?, already have active UDP sessions with a rendezvous server?. When a client registers with?, the server records?two?endpoints for that client: the (IP address, UDP port) pair that the client?believes?itself to be using to talk with?, and the (IP address, UDP port) pair that the server?observes?the client to be using to talk with it. We refer to the first pair as the client's?private?endpoint and the second as the client's?public?endpoint. The server might obtain the client's private endpoint from the client itself in a field in the body of the client's registration message, and obtain the client's public endpoint from the source IP address and source UDP port fields in the IP and UDP headers of that registration message. If the client is?not?behind a NAT, then its private and public endpoints should be identical.

A few poorly behaved NATs are known to scan the body of UDP datagrams for 4-byte fields that look like IP addresses, and translate them as they would the IP address fields in the IP header. To be robust against such behavior, applications may wish to obfuscate IP addresses in messages bodies slightly, for example by transmitting the one's complement of the IP address instead of the IP address itself. Of course, if the application is encrypting its messages, then this behavior is not likely to be a problem.

3.2 Establishing Peer-to-Peer Sessions

Suppose client??wants to establish a UDP session directly with client?. Hole punching proceeds as follows:

  • ?initially does not know how to reach?, so??asks??for help establishing a UDP session with?.
  • ?replies to??with a message containing?'s public?and?private endpoints. At the same time,??uses its UDP session with??to send??a connection request message containing?'s public and private endpoints. Once these messages are received,??and??know each other's public and private endpoints.
  • When??receives?'s public and private endpoints from?,??starts sending UDP packets to?both?of these endpoints, and subsequently “locks in” whichever endpoint first elicits a valid response from?. Similarly, when??receives?'s public and private endpoints in the forwarded connection request,??starts sending UDP packets to??at each of?'s known endpoints, locking in the first endpoint that works. The order and timing of these messages are not critical as long as they are asynchronous.
  • We now consider how UDP hole punching handles each of three specific network scenarios. In the first situation, representing the “easy” case, the two clients actually reside behind the same NAT, on one private network. In the second, most common case, the clients reside behind different NATs. In the third scenario, the clients each reside behind?two?levels of NAT: a common “first-level” NAT deployed by an ISP for example, and distinct “second-level” NATs such as consumer NAT routers for home networks.

    It is in general difficult or impossible for the application itself to determine the exact physical layout of the network, and thus which of these scenarios (or the many other possible ones) actually applies at a given time. Protocols such as STUN?[19] can provide some information about the NATs present on a communication path, but this information may not always be complete or reliable, especially when multiple levels of NAT are involved. Nevertheless, hole punching works automatically in all of these scenarios?without?the application having to know the specific network organization, as long as the NATs involved behave in a reasonable fashion. (“Reasonable” behavior for NATs will be described later in Section?5.)

    3.3 Peers Behind a Common NAT

    First consider the simple scenario in which the two clients (probably unknowingly) happen to reside behind the same NAT, and are therefore located in the same private IP address realm, as shown in Figure?4. Client??has established a UDP session with server?, to which the common NAT has assigned its own public port number 62000. Client??has similarly established a session with?, to which the NAT has assigned public port number 62005.

    Figure 4:?UDP Hole Punching, Peers Behind a Common NAT

    Suppose that client??uses the hole punching technique outlined above to establish a UDP session with?, using server??as an introducer. Client??sends??a message requesting a connection to?.??responds to??with?'s public and private endpoints, and also forwards?'s public and private endpoints to?. Both clients then attempt to send UDP datagrams to each other directly at each of these endpoints. The messages directed to the public endpoints may or may not reach their destination, depending on whether or not the NAT supports hairpin translation as described below in Section?3.5. The messages directed at the private endpoints?do?reach their destinations, however, and since this direct route through the private network is likely to be faster than an indirect route through the NAT anyway, the clients are most likely to select the private endpoints for subsequent regular communication.

    By assuming that NATs support hairpin translation, the application might dispense with the complexity of trying private as well as public endpoints, at the cost of making local communication behind a common NAT unnecessarily pass through the NAT. As our results in Section?6?show, however, hairpin translation is still much less common among existing NATs than are other “P2P-friendly” NAT behaviors. For now, therefore, applications may benefit substantially by using both public and private endpoints.

    3.4 Peers Behind Different NATs

    Suppose clients??and??have private IP addresses behind different NATs, as shown in Figure?5.??and??have each initiated UDP communication sessions from their local port 4321 to port 1234 on server?. In handling these outbound sessions, NAT??has assigned port 62000 at its own public IP address, 155.99.25.11, for the use of?'s session with?, and NAT??has assigned port 31000 at its IP address, 138.76.29.7, to?'s session with?.

    Figure 5:?UDP Hole Punching, Peers Behind Different NATs

    In?'s registration message to?,??reports its private endpoint to??as 10.0.0.1:4321, where 10.0.0.1 is?'s IP address on its own private network.??records?'s reported private endpoint, along with?'s public endpoint as observed by??itself.?'s public endpoint in this case is 155.99.25.11:62000, the temporary endpoint assigned to the session by the NAT. Similarly, when client??registers,??records?'s private endpoint as 10.1.1.3:4321 and?'s public endpoint as 138.76.29.7:31000.

    Now client??follows the hole punching procedure described above to establish a UDP communication session directly with?. First,??sends a request message to??asking for help connecting with?. In response,??sends?'s public and private endpoints to?, and sends?'s public and private endpoints to?.??and??each start trying to send UDP datagrams directly to each of these endpoints.

    Since??and??are on different private networks and their respective private IP addresses are not globally routable, the messages sent to these endpoints will reach either the wrong host or no host at all. Because many NATs also act as DHCP servers, handing out IP addresses in a fairly deterministic way from a private address pool usually determined by the NAT vendor by default, it is quite likely in practice that?'s messages directed at?'s private endpoint will reach?some?(incorrect) host on?'s private network that happens to have the same private IP address as??does. Applications must therefore authenticate all messages in some way to filter out such stray traffic robustly. The messages might include application-specific names or cryptographic tokens, for example, or at least a random nonce pre-arranged through?.

    Now consider?'s first message sent to?'s public endpoint, as shown in Figure?5. As this outbound message passes through?'s NAT, this NAT notices that this is the first UDP packet in a new outgoing session. The new session's source endpoint (10.0.0.1:4321) is the same as that of the existing session between??and?, but its destination endpoint is different. If NAT??is well-behaved, it preserves the identity of?'s private endpoint, consistently translating?all?outbound sessions from private source endpoint 10.0.0.1:4321 to the corresponding public source endpoint 155.99.25.11:62000.?'s first outgoing message to?'s public endpoint thus, in effect, “punches a hole” in?'s NAT for a new UDP session identified by the endpoints (10.0.0.1:4321, 138.76.29.7:31000) on?'s private network, and by the endpoints (155.99.25.11:62000, 138.76.29.7:31000) on the main Internet.

    If?'s message to?'s public endpoint reaches?'s NAT before?'s first message to??has crossed?'s own NAT, then?'s NAT may interpret?'s inbound message as unsolicited incoming traffic and drop it.?'s first message to?'s public address, however, similarly opens a hole in?'s NAT, for a new UDP session identified by the endpoints (10.1.1.3:4321, 155.99.25.11:62000) on?'s private network, and by the endpoints (138.76.29.7:31000, 155.99.25.11:62000) on the Internet. Once the first messages from??and??have crossed their respective NATs, holes are open in each direction and UDP communication can proceed normally. Once the clients have verified that the public endpoints work, they can stop sending messages to the alternative private endpoints.

    3.5 Peers Behind Multiple Levels of NAT

    In some topologies involving multiple NAT devices, two clients cannot establish an “optimal” P2P route between them without specific knowledge of the topology. Consider a final scenario, depicted in Figure?6. Suppose NAT??is a large industrial NAT deployed by an internet service provider (ISP) to multiplex many customers onto a few public IP addresses, and NATs??and??are small consumer NAT routers deployed independently by two of the ISP's customers to multiplex their private home networks onto their respective ISP-provided IP addresses. Only server??and NAT??have globally routable IP addresses; the “public” IP addresses used by NAT??and NAT??are actually private to the ISP's address realm, while client?'s and?'s addresses in turn are private to the addressing realms of NAT??and NAT?, respectively. Each client initiates an outgoing connection to server??as before, causing NATs??and??each to create a single public/private translation, and causing NAT??to establish a public/private translation for each session.

    Figure 6:?UDP Hole Punching, Peers Behind Multiple Levels of NAT

    Now suppose??and??attempt to establish a direct peer-to-peer UDP connection via hole punching. The optimal routing strategy would be for client??to send messages to client?'s “semi-public” endpoint at NAT?, 10.0.1.2:55000 in the ISP's addressing realm, and for client??to send messages to?'s “semi-public” endpoint at NAT?, namely 10.0.1.1:45000. Unfortunately,??and??have no way to learn these addresses, because server??only sees the truly global public endpoints of the clients, 155.99.25.11:62000 and 155.99.25.11:62005 respectively. Even if??and??had some way to learn these addresses, there is still no guarantee that they would be usable, because the address assignments in the ISP's private address realm might conflict with unrelated address assignments in the clients' private realms. (NAT?'s IP address in NAT?'s realm might just as easily have been 10.1.1.3, for example, the same as client?'s private address in NAT?'s realm.)

    The clients therefore have no choice but to use their global public addresses as seen by??for their P2P communication, and rely on NAT??providing?hairpin?or?loopback?translation. When??sends a UDP datagram to?'s global endpoint, 155.99.25.11:62005, NAT??first translates the datagram's source endpoint from 10.0.0.1:4321 to 10.0.1.1:45000. The datagram now reaches NAT?, which recognizes that the datagram's destination address is one of NAT?'s own translated?public?endpoints. If NAT??is well-behaved, it then translates?both?the source and destination addresses in the datagram and “loops” the datagram back onto the private network, now with a source endpoint of 155.99.25.11:62000 and a destination endpoint of 10.0.1.2:55000. NAT??finally translates the datagram's destination address as the datagram enters?'s private network, and the datagram reaches?. The path back to?works similarly. Many NATs do not yet support hairpin translation, but it is becoming more common as NAT vendors become aware of this issue.

    3.6 UDP Idle Timeouts

    Since the UDP transport protocol provides NATs with no reliable, application-independent way to determine the lifetime of a session crossing the NAT, most NATs simply associate an idle timer with UDP translations, closing the hole if no traffic has used it for some time period. There is unfortunately no standard value for this timer: some NATs have timeouts as short as 20 seconds. If the application needs to keep an idle UDP session active after establishing the session via hole punching, the application must send periodic keep-alive packets to ensure that the relevant translation state in the NATs does not disappear.

    Unfortunately, many NATs associate UDP idle timers with individual UDP sessions defined by a particular pair of endpoints, so sending keep-alives on one session will not keep other sessions active even if all the sessions originate from the same private endpoint. Instead of sending keep-alives on many different P2P sessions, applications can avoid excessive keep-alive traffic by detecting when a UDP session no longer works, and re-running the original hole punching procedure again “on demand.”

    4 TCP Hole Punching

    Establishing peer-to-peer TCP connections between hosts behind NATs is slightly more complex than for UDP, but TCP hole punching is remarkably similar at the protocol level. Since it is not as well-understood, it is currently supported by fewer existing NATs. When the NATs involved?do?support it, however, TCP hole punching is just as fast and reliable as UDP hole punching. Peer-to-peer TCP communication across well-behaved NATs may in fact be?more?robust than UDP communication, because unlike UDP, the TCP protocol's state machine gives NATs on the path a standard way to determine the precise lifetime of a particular TCP session.

    4.1 Sockets and TCP Port Reuse

    The main practical challenge to applications wishing to implement TCP hole punching is not a protocol issue but an application programming interface (API) issue. Because the standard Berkeley sockets API was designed around the client/server paradigm, the API allows a TCP stream socket to be used to initiate an outgoing connection via?connect(), or to listen for incoming connections via?listen()?and?accept(),?but not both. Further, TCP sockets usually have a one-to-one correspondence to TCP port numbers on the local host: after the application binds one socket to a particular local TCP port, attempts to bind a second socket to the same TCP port fail.

    For TCP hole punching to work, however, we need to use a single local TCP port to listen for incoming TCP connections and to initiate multiple outgoing TCP connections concurrently. Fortunately, all major operating systems support a special TCP socket option, commonly named?SO_REUSEADDR, which allows the application to bind multiple sockets to the same local endpoint as long as this option is set on all of the sockets involved. BSD systems have introduced a?SO_REUSEPORT?option that controls port reuse separately from address reuse; on such systems?both?of these options must be set.

    4.2 Opening Peer-to-Peer TCP Streams

    Suppose that client??wishes to set up a TCP connection with client?. We assume as usual that both??and??already have active TCP connections with a well-known rendezvous server?. The server records each registered client's public and private endpoints, just as for UDP. At the protocol level, TCP hole punching works almost exactly as for UDP:

  • Client??uses its active TCP session with??to ask??for help connecting to?.
  • ?replies to??with?'s public and private TCP endpoints, and at the same time sends?'s public and private endpoints to?.
  • From?the same local TCP ports?that??and??used to register with?,??and??each asynchronously make outgoing connection attempts to the other's public and private endpoints as reported by?, while simultaneously listening for incoming connections on their respective local TCP ports.
  • ?and??wait for outgoing connection attempts to succeed, and/or for incoming connections to appear. If one of the outgoing connection attempts fails due to a network error such as “connection reset” or “host unreachable,” the host simply re-tries that connection attempt after a short delay (e.g., one second), up to an application-defind maximum timeout period.
  • When a TCP connection is made, the hosts authenticate each other to verify that they connected to the intended host. If authentication fails, the clients close that connection and continue waiting for others to succeed. The clients use the first successfully authenticated TCP stream resulting from this process.
  • Unlike with UDP, where each client only needs one socket to communicate with both??and any number of peers simultaneously, with TCP each client application must manage several sockets bound to a single local TCP port on that client node, as shown in Figure?7. Each client needs a stream socket representing its connection to?, a listen socket on which to accept incoming connections from peers, and at least two additional stream sockets with which to initiate outgoing connections to the other peer's public and private TCP endpoints.

    Figure 7:?Sockets versus Ports for TCP Hole Punching

    Consider the common-case scenario in which the clients??and??are behind different NATs, as shown in Figure?5, and assume that the port numbers shown in the figure are now for TCP rather than UDP ports. The outgoing connection attempts??and??make to each other's private endpoints either fail or connect to the wrong host. As with UDP, it is important that TCP applications authenticate their peer-to-peer sessions, due of the likelihood of mistakenly connecting to a random host on the local network that happens to have the same private IP address as the desired host on a remote private network.

    The clients' outgoing connection attempts to each other's?public?endpoints, however, cause the respective NATs to open up new “holes” enabling direct TCP communication between??and?. If the NATs are well-behaved, then a new peer-to-peer TCP stream automatically forms between them. If?'s first SYN packet to??reaches?'s NAT before?'s first SYN packet to??reaches?'s NAT, for example, then?'s NAT may interpret?'s SYN as an unsolicited incoming connection attempt and drop it.?'s first SYN packet to??should subsequently get through, however, because?'s NAT sees this SYN as being part of the outbound session to??that?'s first SYN had already initiated.

    4.3 Behavior Observed by the Application

    What the client applications observe to happen with their sockets during TCP hole punching depends on the timing and the TCP implementations involved. Suppose that?'s first outbound SYN packet to?'s public endpoint is dropped by NAT?, but?'s first subsequent SYN packet to?'s public endpoint gets through to??before?'s TCP retransmits its SYN. Depending on the operating system involved, one of two things may happen:

    • 's TCP implementation notices that the session endpoints for the incoming SYN match those of an outbound session??was attempting to initiate.?'s TCP stack therefore associates this new session with the socket that the local application on??was using to?connect()?to?'s public endpoint. The application's asynchronous?connect()?call succeeds, and nothing happens with the application's listen socket.

      Since the received SYN packet did not include an ACK for?'s previous outbound SYN,?'s TCP replies to?'s public endpoint with a SYN-ACK packet, the SYN part being merely a replay of?'s original outbound SYN, using the same sequence number. Once?'s TCP receives?'s SYN-ACK, it responds with its own ACK for?'s SYN, and the TCP session enters the connected state on both ends.

    • Alternatively,?'s TCP implementation might instead notice that??has an active listen socket on that port waiting for incoming connection attempts. Since?'s SYN looks like an incoming connection attempt,?'s TCP creates a?new?stream socket with which to associate the new TCP session, and hands this new socket to the application via the application's next?accept()?call on its listen socket.?'s TCP then responds to??with a SYN-ACK as above, and TCP connection setup proceeds as usual for client/server-style connections.

      Since?'s prior outbound?connect()?attempt to??used a combination of source and destination endpoints that is now in use by another socket, namely the one just returned to the application via?accept(),?'s asynchronous?connect()?attempt must fail at some point, typically with an “address in use” error. The application nevertheless has the working peer-to-peer stream socket it needs to communicate with?, so it ignores this failure.

    The first behavior above appears to be usual for BSD-based operating systems, whereas the second behavior appears more common under Linux and Windows.

    4.4 Simultaneous TCP Open

    Suppose that the timing of the various connection attempts during the hole punching process works out so that the initial outgoing SYN packets from?both?clients traverse their respective local NATs, opening new outbound TCP sessions in each NAT, before reaching the remote NAT. In this “lucky” case, the NATs do not reject either of the initial SYN packets, and the SYNs cross on the wire between the two NATs. In this case, the clients observe an event known as a?simultaneous TCP open: each peer's TCP receives a “raw” SYN while waiting for a SYN-ACK. Each peer's TCP responds with a SYN-ACK, whose SYN part essentially “replays” the peer's previous outgoing SYN, and whose ACK part acknowledges the SYN received from the other peer.

    What the respective applications observe in this case again depends on the behavior of the TCP implementations involved, as described in the previous section. If?both?clients implement the second behavior above, it may be that?all?of the asynchronous?connect()?calls made by the application ultimately fail, but the application running on each client nevertheless receives a new, working peer-to-peer TCP stream socket via?accept()--as if this TCP stream had magically “created itself” on the wire and was merely passively accepted at the endpoints! As long as the application does not care whether it ultimately receives its peer-to-peer TCP sockets via?connect()?or?accept(), the process results in a working stream on any TCP implementation that properly implements the standard TCP state machine specified in RFC 793?[23].

    Each of the alternative network organization scenarios discussed in Section?3?for UDP works in exactly the same way for TCP. For example, TCP hole punching works in multi-level NAT scenarios such as the one in Figure?6?as long as the NATs involved are well-behaved.

    4.5 Sequential Hole Punching

    In a variant of the above TCP hole punching procedure implemented by the NatTrav library?[4], the clients attempt connections to each other sequentially rather than in parallel. For example: (1)??informs??via??of its desire to communicate,?without?simultaneously listening on its local port; (2)??makes a?connect()?attempt to?, which opens a hole in?'s NAT but then fails due to a timeout or RST from?'s NAT or a RST from??itself; (3)??closes its connection to??and does a?listen()?on its local port; (4)??in turn closes its connection with?, signaling??to attempt a?connect()?directly to?.

    This sequential procedure may be particularly useful on Windows hosts prior to XP Service Pack 2, which did not correctly implement simultaneous TCP open, or on sockets APIs that do not support the?SO_REUSEADDR?functionality. The sequential procedure is more timing-dependent, however, and may be slower in the common case and less robust in unusual situations. In step (2), for example,??must allow its “doomed-to-fail”?connect()?attempt enough time to ensure that at least one SYN packet traverses all NATs on its side of the network. Too little delay risks a lost SYN derailing the process, whereas too much delay increases the total time required for hole punching. The sequential hole punching procedure also effectively “consumes” both clients' connections to the server?, requiring the clients to open fresh connections to??for each new P2P connection to be forged. The parallel hole punching procedure, in contrast, typically completes as soon as both clients make their outgoing?connect()?attempts, and allows each client to retain and re-use a single connection to??indefinitely.

    5 Properties of P2P-Friendly NATs

    This section describes the key behavioral properties NATs must have in order for the hole punching techniques described above to work properly. Not all current NAT implementations satisfy these properties, but many do, and NATs are gradually becoming more “P2P-friendly” as NAT vendors recognize the demand for peer-to-peer protocols such as voice over IP and on-line gaming.

    This section is not meant to be a complete or definitive specification for how NATs “should” behave; we provide it merely for information about the most commonly observed behaviors that enable or break P2P hole punching. The IETF has started a new working group, BEHAVE, to define official “best current practices” for NAT behavior. The BEHAVE group's initial drafts include the considerations outlined in this section and others; NAT vendors should of course follow the IETF working group directly as official behavioral standards are formulated.

    5.1 Consistent Endpoint Translation

    The hole punching techniques described here only work automatically if the NAT consistently maps a given TCP or UDP source endpoint on the private network to a?single?corresponding public endpoint controlled by the NAT. A NAT that behaves in this way is referred to as a?cone NAT?in RFC 3489?[19] and elsewhere, because the NAT “focuses” all sessions originating from a single private endpoint through the same public endpoint on the NAT.

    Consider again the scenario in Figure?5, for example. When client??initially contacted the well-known server?, NAT??chose to use port 62000 at its own public IP address, 155.99.25.11, as a temporary public endpoint to representing?'s private endpoint 10.0.0.1:4321. When??later attempts to establish a peer-to-peer session with??by sending a message from the same local private endpoint to?'s public endpoint,??depends on NAT??preserving the identity of this private endpoint, and re-using the existing public endpoint of 155.99.25.11:62000, because that is the public endpoint for??to which??will be sending its corresponding messages.

    A NAT that is only designed to support client/server protocols will not necessarily preserve the identities of private endpoints in this way. Such a NAT is a?symmetric NAT?in RFC 3489 terminology. For example, after the NAT assigns the public endpoint 155.99.25.11:62000 to client?'s session with server?, the NAT might assign a different public endpoint, such as 155.99.25.11:62001, to the P2P session that??tries to initiate with?. In this case, the hole punching process fails to provide connectivity, because the subsequent incoming messages from??reach NAT??at the wrong port number.

    Many symmetric NATs allocate port numbers for successive sessions in a fairly predictable way. Exploiting this fact, variants of hole punching algorithms?[9,1] can be made to work “much of the time” even over symmetric NATs by first probing the NAT's behavior using a protocol such as STUN?[19], and using the resulting information to “predict” the public port number the NAT will assign to a new session. Such prediction techniques amount to chasing a moving target, however, and many things can go wrong along the way. The predicted port number might already be in use causing the NAT to jump to another port number, for example, or another client behind the same NAT might initiate an unrelated session at the wrong time so as to allocate the predicted port number. While port number prediction can be a useful trick for achieving maximum compatibility with badly-behaved existing NATs, it does not represent a robust long-term solution. Since symmetric NAT provides no greater security than a cone NAT with per-session traffic filtering, symmetric NAT is becoming less common as NAT vendors adapt their algorithms to support P2P protocols.

    5.2 Handling Unsolicited TCP Connections

    When a NAT receives a SYN packet on its public side for what appears to be an unsolicited incoming connection attempt, it is important that the NAT just silently drop the SYN packet. Some NATs instead actively reject such incoming connections by sending back a TCP RST packet or even an ICMP error report, which interferes with the TCP hole punching process. Such behavior is not necessarily fatal, as long as the applications re-try outgoing connection attempts as specified in step 4 of the process described in Section?4.2, but the resulting transient errors can make hole punching take longer.

    5.3 Leaving Payloads Alone

    A few existing NATs are known to scan “blindly” through packet payloads for 4-byte values that look like IP addresses, and translate them as they would the IP address in the packet header, without knowing anything about the application protocol in use. This bad behavior fortunately appears to be uncommon, and applications can easily protect themselves against it by obfuscating IP addresses they send in messages, for example by sending the bitwise complement of the desired IP address.

    5.4 Hairpin Translation

    Some multi-level NAT situations require hairpin translation support in order for either TCP or UDP hole punching to work, as described in Section?3.5. The scenario shown in Figure?6, for example, depends on NAT??providing hairpin translation. Support for hairpin translation is unfortunately rare in current NATs, but fortunately so are the network scenarios that require it. Multi-level NAT is becoming more common as IPv4 address space depletion continues, however, so support for hairpin translation is important in future NAT implementations.

    6 Evaluation of Existing NATs

    To evaluate the robustness of the TCP and UDP hole punching techniques described in this paper on a variety of existing NATs, we implemented and distributed a test program called NAT Check?[16], and solicited data from Internet users about their NATs.

    NAT Check's primary purpose is to test NATs for the two behavioral properties most crucial to reliable UDP and TCP hole punching: namely, consistent identity-preserving endpoint translation (Section?5.1), and silently dropping unsolicited incoming TCP SYNs instead of rejecting them with RSTs or ICMP errors (Section?5.2). In addition, NAT Check separately tests whether the NAT supports hairpin translation (Section?5.4), and whether the NAT filters unsolicited incoming traffic at all. This last property does not affect hole punching, but provides a useful indication the NAT's firewall policy.

    NAT Check makes no attempt to test every relevant facet of NAT behavior individually: a wide variety of subtle behavioral differences are known, some of which are difficult to test reliably?[12]. Instead, NAT Check merely attempts to answer the question, “how commonly can the proposed hole punching techniques be expected to work on deployed NATs, under typical network conditions?”

    6.1 Test Method

    NAT Check consists of a client program to be run on a machine behind the NAT to be tested, and three well-known servers at different global IP addresses. The client cooperates with the three servers to check the NAT behavior relevant to both TCP and UDP hole punching. The client program is small and relatively portable, currently running on Windows, Linux, BSD, and Mac OS X. The machines hosting the well-known servers all run FreeBSD.

    6.1.1 UDP Test

    To test the NAT's behavior for UDP, the client opens a socket and binds it to a local UDP port, then successively sends “ping”-like requests to servers 1 and 2, as shown in Figure?8. These servers each respond to the client's pings with a reply that includes the client's public UDP endpoint: the client's own IP address and UDP port number as observed by the server. If the two servers report the same public endpoint for the client, NAT Check assumes that the NAT properly preserves the identity of the client's private endpoint, satisfying the primary precondition for reliable UDP hole punching.

    Figure 8:?NAT Check Test Method for UDP

    When server 2 receives a UDP request from the client, besides replying directly to the client it also forwards the request to server 3, which in turn replies to the client from its own IP address. If the NAT's firewall properly filters “unsolicited” incoming traffic on a per-session basis, then the client never sees these replies from server 3, even though they are directed at the same public port as the replies from servers 1 and 2.

    To test the NAT for hairpin translation support, the client simply opens a second UDP socket at a different local port and uses it to send messages to the?public?endpoint representing the client's first UDP socket, as reported by server 2. If these messages reach the client's first private endpoint, then the NAT supports hairpin translation.

    6.1.2 TCP Test

    The TCP test follows a similar pattern as for UDP. The client uses a single local TCP port to initiate outbound sessions to servers 1 and 2, and checks whether the public endpoints reported by servers 1 and 2 are the same, the first precondition for reliable TCP hole punching.

    The NAT's response to unsolicited incoming connection attempts also impacts the speed and reliability of TCP hole punching, however, so NAT Check also tests this behavior. When server 2 receives the client's request, instead of immediately replying to the client, it forwards a request to server 3 and waits for server 3 to respond with a “go-ahead” signal. When server 3 receives this forwarded request, it attempts to initiate an inbound connection to the client's public TCP endpoint. Server 3 waits up to five seconds for this connection to succeed or fail, and if the connection attempt is still “in progress” after five seconds, server 3 responds to server 2 with the “go-ahead” signal and continues waiting for up to 20 seconds. Once the client finally receives server 2's reply (which server 2 delayed waiting for server 3's “go-ahead” signal), the client attempts an outbound connection to server 3, effectively causing a simultaneous TCP open with server 3.

    What happens during this test depends on the NAT's behavior as follows. If the NAT properly just drops server 3's “unsolicited” incoming SYN packets, then nothing happens on the client's listen socket during the five second period before server 2 replies to the client. When the client finally initiates its own connection to server 3, opening a hole through the NAT, the attempt succeeds immediately. If on the other hand the NAT does?not?drop server 3's unsolicited incoming SYNs but allows them through (which is fine for hole punching but not ideal for security), then the client receives an incoming TCP connection on its listen socket before receiving server 2's reply. Finally, if the NAT actively rejects server 3's unsolicited incoming SYNs by sending back TCP RST packets, then server 3 gives up and the client's subsequent attempt to connect to server 3 fails.

    To test hairpin translation for TCP, the client simply uses a secondary local TCP port to attempt a connection to the public endpoint corresponding to its primary TCP port, in the same way as for UDP.

    6.2 Test Results

    The NAT Check data we gathered consists of 380 reported data points covering a variety of NAT router hardware from 68 vendors, as well as the NAT functionality built into different versions of eight popular operating systems. Only 335 of the total data points include results for UDP hairpin translation, and only 286 data points include results for TCP, because we implemented these features in later versions of NAT Check after we had already started gathering results. The data is summarized by NAT vendor in Table?1; the table only individually lists vendors for which at least five data points were available. The variations in the test results for a given vendor can be accounted for by a variety of factors, such as different NAT devices or product lines sold by the same vendor, different software or firmware versions of the same NAT implementation, different configurations, and probably occasional NAT Check testing or reporting errors.

    ?

    Table 1:?User Reports of NAT Support for UDP and TCP Hole Punching
    ??UDPTCP
    ??Hole?Hole?
    ??PunchingHairpinPunchingHairpin
    NAT Hardware????????
    ?Linksys45/46(98%)5/42(12%)33/38(87%)3/38(8%)
    ?Netgear31/37(84%)3/35(9%)19/30(63%)0/30(0%)
    ?D-Link16/21(76%)11/21(52%)9/19(47%)2/19(11%)
    ?Draytek2/17(12%)3/12(25%)2/7(29%)0/7(0%)
    ?Belkin14/14(100%)1/14(7%)11/11(100%)0/11(0%)
    ?Cisco12/12(100%)3/9(33%)6/7(86%)2/7(29%)
    ?SMC12/12(100%)3/10(30%)8/9(89%)2/9(22%)
    ?ZyXEL7/9(78%)1/8(13%)0/7(0%)0/7(0%)
    ?3Com7/7(100%)1/7(14%)5/6(83%)0/6(0%)
    OS-based NAT????????
    ?Windows31/33(94%)11/32(34%)16/31(52%)28/31(90%)
    ?Linux26/32(81%)3/25(12%)16/24(67%)2/24(8%)
    ?FreeBSD7/9(78%)3/6(50%)2/3(67%)1/1(100%)
    All Vendors310/380(82%)80/335(24%)184/286(64%)37/286(13%)


    Out of the 380 reported data points for UDP, in 310 cases (82%) the NAT consistently translated the client's private endpoint, indicating basic compatibility with UDP hole punching. Support for hairpin translation is much less common, however: of the 335 data points that include UDP hairpin translation results, only 80 (24%) show hairpin translation support.

    Out of the 286 data points for TCP, 184 (64%) show compatibility with TCP hole punching: the NAT consistently translates the client's private TCP endpoint, and does not send back RST packets in response to unsolicited incoming connection attempts. Hairpin translation support is again much less common: only 37 (13%) of the reports showed hairpin support for TCP.

    Since these reports were generated by a “self-selecting” community of volunteers, they do not constitute a random sample and thus do not necessarily represent the true distribution of the NATs in common use. The results are nevertheless encouraging: it appears that the majority of commonly-deployed NATs already support UDP and TCP hole punching at least in single-level NAT scenarios.

    6.3 Testing Limitations

    There are a few limitations in NAT Check's current testing protocol that may cause misleading results in some cases. First, we only learned recently that a few NAT implementations blindly translate IP addresses they find in unknown application payloads, and the NAT Check protocol currently does not protect itself from this behavior by obfuscating the IP addresses it transmits.

    Second, NAT Check's current hairpin translation checking may yield unnecessarily pessimistic results because it does not use the full, two-way hole punching procedure for this test. NAT Check currently assumes that a NAT supporting hairpin translation does not filter “incoming” hairpin connections arriving from the private network in the way it would filter incoming connections arriving at the public side of the NAT, because such filtering is unnecessary for security. We later realized, however, that a NAT might simplistically treat?any?traffic directed at the NAT's public ports as “untrusted” regardless of its origin. We do not yet know which behavior is more common.

    Finally, NAT implementations exist that consistently translate the client's private endpoint as long as?only one?client behind the NAT is using a particular private port number, but switch to symmetric NAT or even worse behaviors if two or more clients with different IP addresses on the private network try to communicate through the NAT from the same private port number. NAT Check could only detect this behavior by requiring the user to run it on two or more client hosts behind the NAT at the same time. Doing so would make NAT Check much more difficult to use, however, and impossible for users who only have one usable machine behind the NAT. Nevertheless, we plan to implement this testing functionality as an option in a future version of NAT Check.

    6.4 Corroboration of Results

    Despite testing difficulties such as those above, our results are generally corroborated by those of a large ISP, who recently found that of the top three consumer NAT router vendors, representing 86% of the NATs observed on their network, all three vendors currently produce NATs compatible with UDP hole punching?[25]. Additional independent results recently obtained using the UDP-oriented STUN protocol?[12], and STUNT, a TCP-enabled extension?[8,9], also appear consistent with our results. These latter studies provide more information on each NAT by testing a wider variety of behaviors individually, instead of just testing for basic hole punching compatibility as NAT Check does. Since these more extensive tests require multiple cooperating clients behind the NAT and thus are more difficult to run, however, these results are so far available on a more limited variety of NATs.

    7 Related Work

    UDP hole punching was first explored and publicly documented by Dan Kegel?[13], and is by now well-known in peer-to-peer application communities. Important aspects of UDP hole punching have also been indirectly documented in the specifications of several experimental protocols, such as STUN?[19], ICE?[17], and Teredo?[11]. We know of no existing published work that thoroughly analyzes hole punching, however, or that points out the hairpin translation issue for multi-level NAT (Section?3.5).

    We also know of no prior work that develops TCP hole punching in the symmetric fashion described here. Even the existence of the crucial?SO_REUSEADDR/SO_REUSEPORT?options in the Berkeley sockets API appears to be little-known among P2P application developers. NatTrav?[4] implements a similar but asymmetric TCP hole punching procedure outlined earlier in Section?4.5. NUTSS?[9] and NATBLASTER?[1] implement more complex TCP hole punching tricks that can work around some of the bad NAT behaviors mentioned in Section?5, but they require the rendezvous server to spoof source IP addresses, and they also require the client applications to have access to “raw” sockets, usually available only at root or administrator privilege levels.

    Protocols such as SOCKS?[14], UPnP?[26], and MIDCOM?[22] allow applications to traverse a NAT through explicit cooperation with the NAT. These protocols are not widely or consistently supported by NAT vendors or applications, however, and do not appear to address the increasingly important multi-level NAT scenarios. Explicit control of a NAT further requires the application to locate the NAT and perhaps authenticate itself, which typically involves explicit user configuration. When hole punching works, in contrast, it works with no user intervention.

    Recent proposals such as HIP?[15] and FARA?[2] extend the Internet's basic architecture by decoupling a host's identity from its location?[20]. IPNL?[7], UIP?[5,6], and DOA?[27] propose schemes for routing across NATs in such an architecture. While such extensions are probably needed in the long term, hole punching enables applications to work over the existing network infrastructure immediately with no protocol stack upgrades, and leaves the notion of “host identity” for applications to define.

    8 Conclusion

    Hole punching is a general-purpose technique for establishing peer-to-peer connections in the presence of NAT. As long as the NATs involved meet certain behavioral requirements, hole punching works consistently and robustly for both TCP and UDP communication, and can be implemented by ordinary applications with no special privileges or specific network topology information. Hole punching fully preserves the transparency that is one of the most important hallmarks and attractions of NAT, and works even with multiple levels of NAT--though certain corner case situations require hairpin translation, a NAT feature not yet widely implemented.

    Acknowledgments

    The authors wish to thank Dave Andersen for his crucial support in gathering the results presented in Section?6. We also wish to thank Henrik Nordstrom, Christian Huitema, Justin Uberti, Mema Roussopoulos, and the anonymous USENIX reviewers for valuable feedback on early drafts of this paper. Finally, we wish to thank the many volunteers who took the time to run NAT Check on their systems and submit the results.

    Bibliography

    1
    Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, and Adrian Perrig.?
    NATBLASTER: Establishing TCP connections between hosts behind NATs.?
    In?ACM SIGCOMM Asia Workshop, Beijing, China, April 2005.
    2
    David Clark, Robert Braden, Aaron Falk, and Venkata Pingali.?
    FARA: Reorganizing the addressing architecture.?
    In?ACM SIGCOMM FDNA Workshop, August 2003.
    3
    S.?Deering and R.?Hinden.?
    Internet protocol, version 6 (IPv6) specification, December 1998.?
    RFC 2460.
    4
    Jeffrey?L. Eppinger.?
    TCP connections for P2P apps: A software approach to solving the NAT problem.?
    Technical Report CMU-ISRI-05-104, Carnegie Mellon University, January 2005.
    5
    Bryan Ford.?
    Scalable Internet routing on topology-independent node identities.?
    Technical Report MIT-LCS-TR-926, MIT Laboratory for Computer Science, October 2003.
    6
    Bryan Ford.?
    Unmanaged internet protocol: Taming the edge network management crisis.?
    In?Second Workshop on Hot Topics in Networks, Cambridge, MA, November 2003.
    7
    Paul Francis and Ramakrishna Gummadi.?
    IPNL: A NAT-extended Internet architecture.?
    In?ACM SIGCOMM, August 2002.
    8
    Saikat Guha and Paul Francis.?
    Simple traversal of UDP through NATs and TCP too (STUNT).?
    http://nutss.gforge.cis.cornell.edu/.
    9
    Saikat Guha, Yutaka Takeday, and Paul Francis.?
    NUTSS: A SIP-based approach to UDP and TCP network connectivity.?
    In?SIGCOMM 2004 Workshops, August 2004.
    10
    M.?Holdrege and P.?Srisuresh.?
    Protocol complications with the IP network address translator, January 2001.?
    RFC 3027.
    11
    C.?Huitema.?
    Teredo: Tunneling IPv6 over UDP through NATs, March 2004.?
    Internet-Draft (Work in Progress).
    12
    C.?Jennings.?
    NAT classification results using STUN, October 2004.?
    Internet-Draft (Work in Progress).
    13
    Dan Kegel.?
    NAT and peer-to-peer networking, July 1999.?
    http://www.alumni.caltech.edu/~dank/peer-nat.html.
    14
    M.?Leech et?al.?
    SOCKS protocol, March 1996.?
    RFC 1928.
    15
    R.?Moskowitz and P.?Nikander.?
    Host identity protocol architecture, April 2003.?
    Internet-Draft (Work in Progress).
    16
    NAT check.?
    http://midcom-p2p.sourceforge.net/.
    17
    J.?Rosenberg.?
    Interactive connectivity establishment (ICE), October 2003.?
    Internet-Draft (Work in Progress).
    18
    J.?Rosenberg, C.?Huitema, and R.?Mahy.?
    Traversal using relay NAT (TURN), October 2003.?
    Internet-Draft (Work in Progress).
    19
    J.?Rosenberg, J.?Weinberger, C.?Huitema, and R.?Mahy.?
    STUN - simple traversal of user datagram protocol (UDP) through network address translators (NATs), March 2003.?
    RFC 3489.
    20
    J.?Saltzer.?
    On the naming and binding of network destinations.?
    In P.?Ravasio et al., editor,?Local Computer Networks, pages 311-317. North-Holland, Amsterdam, 1982.?
    RFC 1498.
    21
    P.?Srisuresh and M.?Holdrege.?
    IP network address translator (NAT) terminology and considerations, August 1999.?
    RFC 2663.
    22
    P.?Srisuresh, J.?Kuthan, J.?Rosenberg, A.?Molitor, and A.?Rayhan.?
    Middlebox communication architecture and framework, August 2002.?
    RFC 3303.
    23
    Transmission control protocol, September 1981.?
    RFC 793.
    24
    G.?Tsirtsis and P.?Srisuresh.?
    Network address translation - protocol translation (NAT-PT), February 2000.?
    RFC 2766.
    25
    Justin Uberti.?
    E-mail on IETF MIDCOM mailing list, February 2004.?
    Message-ID:?<402CEB11.1060906@aol.com>.
    26
    UPnP Forum.?
    Internet gateway device (IGD) standardized device control protocol, November 2001.?
    http://www.upnp.org/.
    27
    Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakrishnan, Robert Morris, and Scott Shenker.?
    Middleboxes no longer considered harmful.?
    In?USENIX Symposium on Operating Systems Design and Implementation, San Francisco, CA, December 2004.

    ?


    Bryan Ford 2005-02-17

    轉載于:https://www.cnblogs.com/Proteas/archive/2013/02/04/2891418.html

    總結

    以上是生活随笔為你收集整理的关于 UDP Hole Punching 的资料的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    亚洲自偷精品视频自拍 | 国产xxx69麻豆国语对白 | 欧美大屁股xxxxhd黑色 | 久久五月精品中文字幕 | 一区二区传媒有限公司 | 成年美女黄网站色大免费视频 | 无码一区二区三区在线 | 在线天堂新版最新版在线8 | 大肉大捧一进一出视频出来呀 | 无码人妻精品一区二区三区不卡 | 精品久久综合1区2区3区激情 | 夜先锋av资源网站 | 美女扒开屁股让男人桶 | 亚洲国产精品成人久久蜜臀 | 日本乱偷人妻中文字幕 | 国产口爆吞精在线视频 | 亚洲欧美中文字幕5发布 | 国产成人无码a区在线观看视频app | 国产成人精品必看 | 亚洲欧美日韩成人高清在线一区 | 国产极品视觉盛宴 | 国产精品亚洲一区二区三区喷水 | 精品久久久无码人妻字幂 | 欧美变态另类xxxx | 日本精品人妻无码77777 天堂一区人妻无码 | 精品国产福利一区二区 | 国产精品福利视频导航 | 麻豆国产人妻欲求不满 | 亚洲国产精品一区二区第一页 | 俺去俺来也在线www色官网 | 久久国产自偷自偷免费一区调 | 丝袜人妻一区二区三区 | 又大又硬又黄的免费视频 | 少妇性俱乐部纵欲狂欢电影 | 国产精品香蕉在线观看 | 97资源共享在线视频 | 国内精品人妻无码久久久影院蜜桃 | 亚洲精品中文字幕乱码 | 国内少妇偷人精品视频免费 | 国产无遮挡又黄又爽又色 | 高中生自慰www网站 | 国产高清不卡无码视频 | 少妇人妻av毛片在线看 | 亚洲爆乳精品无码一区二区三区 | 亚洲色欲色欲欲www在线 | 88国产精品欧美一区二区三区 | 欧美喷潮久久久xxxxx | 极品嫩模高潮叫床 | 天天做天天爱天天爽综合网 | 亚洲男人av天堂午夜在 | 亚洲 日韩 欧美 成人 在线观看 | 久久久精品成人免费观看 | 一区二区传媒有限公司 | 中文字幕无码免费久久99 | 伊人久久大香线蕉av一区二区 | 99麻豆久久久国产精品免费 | 国产乱码精品一品二品 | 夜夜夜高潮夜夜爽夜夜爰爰 | 女人被男人躁得好爽免费视频 | 黄网在线观看免费网站 | 少妇厨房愉情理9仑片视频 | 久久久久久a亚洲欧洲av冫 | 无码国产乱人伦偷精品视频 | 欧美人与禽zoz0性伦交 | 国产亚洲精品精品国产亚洲综合 | 乱中年女人伦av三区 | 嫩b人妻精品一区二区三区 | 小鲜肉自慰网站xnxx | 99麻豆久久久国产精品免费 | 97久久精品无码一区二区 | 久久97精品久久久久久久不卡 | 久久精品丝袜高跟鞋 | 中文字幕+乱码+中文字幕一区 | 国产明星裸体无码xxxx视频 | 亚洲色欲色欲天天天www | 亚洲国产av美女网站 | 精品无码国产自产拍在线观看蜜 | 亚洲中文字幕久久无码 | 久久人人爽人人爽人人片ⅴ | 无码精品人妻一区二区三区av | 人妻aⅴ无码一区二区三区 | 人妻夜夜爽天天爽三区 | 青春草在线视频免费观看 | 亚洲va欧美va天堂v国产综合 | 精品一二三区久久aaa片 | 一个人看的www免费视频在线观看 | 4hu四虎永久在线观看 | 99久久精品国产一区二区蜜芽 | 日日摸日日碰夜夜爽av | 青春草在线视频免费观看 | 六月丁香婷婷色狠狠久久 | 激情内射亚州一区二区三区爱妻 | 粗大的内捧猛烈进出视频 | 狠狠噜狠狠狠狠丁香五月 | 亚洲精品一区二区三区大桥未久 | 99视频精品全部免费免费观看 | 女人被男人爽到呻吟的视频 | 亚洲精品国产品国语在线观看 | 亚洲精品久久久久中文第一幕 | 久久99精品久久久久婷婷 | 久久亚洲中文字幕无码 | 亚洲性无码av中文字幕 | 大地资源网第二页免费观看 | 国产乱子伦视频在线播放 | 亚洲热妇无码av在线播放 | 色婷婷欧美在线播放内射 | 亚洲国产欧美国产综合一区 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 九一九色国产 | 亚洲天堂2017无码 | 99riav国产精品视频 | 樱花草在线播放免费中文 | 乌克兰少妇性做爰 | 成熟人妻av无码专区 | 成人精品视频一区二区 | 国产成人一区二区三区在线观看 | 波多野42部无码喷潮在线 | 精品无人区无码乱码毛片国产 | 无码纯肉视频在线观看 | 丰满诱人的人妻3 | 国产成人精品久久亚洲高清不卡 | 蜜桃av抽搐高潮一区二区 | 98国产精品综合一区二区三区 | 亚洲国产精品久久久天堂 | 亚洲娇小与黑人巨大交 | 亚洲国产精品毛片av不卡在线 | 久久国产自偷自偷免费一区调 | 在线欧美精品一区二区三区 | 国内精品久久久久久中文字幕 | 欧美日韩一区二区三区自拍 | 日韩av无码一区二区三区 | 欧美日韩人成综合在线播放 | 国产精品久免费的黄网站 | 亚洲欧美日韩国产精品一区二区 | 国产人妻精品一区二区三区不卡 | 99精品久久毛片a片 | 无码av中文字幕免费放 | 国产特级毛片aaaaaa高潮流水 | 国产99久久精品一区二区 | 日本精品少妇一区二区三区 | 久久精品国产一区二区三区 | 日本高清一区免费中文视频 | 成人无码影片精品久久久 | 久久久精品456亚洲影院 | 中文字幕 人妻熟女 | 亚洲色大成网站www | 一本无码人妻在中文字幕免费 | 日本精品人妻无码免费大全 | 自拍偷自拍亚洲精品被多人伦好爽 | 欧美激情一区二区三区成人 | 久久国产精品偷任你爽任你 | 日本一区二区三区免费高清 | 激情人妻另类人妻伦 | 精品人妻中文字幕有码在线 | 国产av人人夜夜澡人人爽麻豆 | 人人澡人人透人人爽 | 精品人妻av区 | 在线播放免费人成毛片乱码 | aa片在线观看视频在线播放 | 亚欧洲精品在线视频免费观看 | 乱码午夜-极国产极内射 | 99国产欧美久久久精品 | 亚洲成av人片在线观看无码不卡 | 久久99久久99精品中文字幕 | 欧美老妇与禽交 | aⅴ在线视频男人的天堂 | 无遮挡国产高潮视频免费观看 | 日韩成人一区二区三区在线观看 | 欧美色就是色 | 日产精品高潮呻吟av久久 | 国产精品香蕉在线观看 | 无码人妻丰满熟妇区毛片18 | 欧美乱妇无乱码大黄a片 | 久久国产精品偷任你爽任你 | 蜜桃视频韩日免费播放 | 久久99精品国产麻豆蜜芽 | 97色伦图片97综合影院 | 亚洲天堂2017无码 | 国产精品a成v人在线播放 | 国产另类ts人妖一区二区 | av小次郎收藏 | 俄罗斯老熟妇色xxxx | 成人影院yy111111在线观看 | 亚洲日韩av一区二区三区四区 | 色综合久久网 | 俄罗斯老熟妇色xxxx | 亚洲成av人综合在线观看 | 人妻与老人中文字幕 | 性开放的女人aaa片 | 日日噜噜噜噜夜夜爽亚洲精品 | 一本大道久久东京热无码av | 动漫av网站免费观看 | 自拍偷自拍亚洲精品被多人伦好爽 | 精品国产一区二区三区av 性色 | 亚洲乱码中文字幕在线 | 国产精品99久久精品爆乳 | 亚洲中文字幕乱码av波多ji | 十八禁真人啪啪免费网站 | 日本熟妇人妻xxxxx人hd | 亚洲乱码中文字幕在线 | 久久久久久久女国产乱让韩 | 亚洲精品欧美二区三区中文字幕 | 中文字幕无线码免费人妻 | 无码毛片视频一区二区本码 | 国产香蕉尹人视频在线 | 国产激情无码一区二区app | 亚洲中文字幕无码一久久区 | 国产又粗又硬又大爽黄老大爷视 | 久久99精品久久久久久 | 亚洲阿v天堂在线 | 99久久无码一区人妻 | 久久久无码中文字幕久... | 免费看少妇作爱视频 | 人人妻人人澡人人爽人人精品 | 国产精品高潮呻吟av久久 | 夜夜影院未满十八勿进 | 日日摸日日碰夜夜爽av | 强伦人妻一区二区三区视频18 | 亚洲国产精品无码一区二区三区 | 少妇人妻大乳在线视频 | 人妻人人添人妻人人爱 | 亚洲热妇无码av在线播放 | 欧洲熟妇色 欧美 | 日本肉体xxxx裸交 | 国内精品久久毛片一区二区 | 久久亚洲精品中文字幕无男同 | 成人免费无码大片a毛片 | 亚洲国产精品无码久久久久高潮 | 国色天香社区在线视频 | 在线观看国产午夜福利片 | 天天躁日日躁狠狠躁免费麻豆 | 久久久久久av无码免费看大片 | 久久综合网欧美色妞网 | 风流少妇按摩来高潮 | 日本熟妇人妻xxxxx人hd | 免费观看又污又黄的网站 | 黑人大群体交免费视频 | 国产偷抇久久精品a片69 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 国产成人无码av片在线观看不卡 | 色情久久久av熟女人妻网站 | 国产精品成人av在线观看 | 国产午夜视频在线观看 | 亚洲精品一区二区三区大桥未久 | 久9re热视频这里只有精品 | 国产精品久久久久久无码 | 在线精品亚洲一区二区 | 无遮无挡爽爽免费视频 | 色欲av亚洲一区无码少妇 | 窝窝午夜理论片影院 | 国产亚洲精品久久久ai换 | 成熟妇人a片免费看网站 | 香港三级日本三级妇三级 | 野外少妇愉情中文字幕 | 精品久久久无码人妻字幂 | 国产精品手机免费 | 久久午夜无码鲁丝片秋霞 | 国产精品福利视频导航 | 国产97人人超碰caoprom | 中文字幕av无码一区二区三区电影 | 色综合视频一区二区三区 | 成人一在线视频日韩国产 | 欧美野外疯狂做受xxxx高潮 | 伊人久久大香线蕉av一区二区 | 强奷人妻日本中文字幕 | v一区无码内射国产 | 国产精品二区一区二区aⅴ污介绍 | 99久久人妻精品免费二区 | 亚洲精品一区二区三区婷婷月 | 妺妺窝人体色www在线小说 | 暴力强奷在线播放无码 | 国产国语老龄妇女a片 | 少妇高潮一区二区三区99 | 国产成人无码a区在线观看视频app | 日韩少妇内射免费播放 | 色综合久久久无码网中文 | 欧美老妇与禽交 | 欧美人与善在线com | 欧美日韩视频无码一区二区三 | 精品国产成人一区二区三区 | 伊人久久大香线蕉av一区二区 | 亚洲一区二区三区国产精华液 | 久久精品无码一区二区三区 | 丁香啪啪综合成人亚洲 | 国产人妖乱国产精品人妖 | 最近免费中文字幕中文高清百度 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 久久综合狠狠综合久久综合88 | 一区二区三区高清视频一 | 国产内射老熟女aaaa | 色情久久久av熟女人妻网站 | 国产精品无码成人午夜电影 | 亚洲日韩一区二区 | 波多野42部无码喷潮在线 | 亚洲日韩中文字幕在线播放 | 99麻豆久久久国产精品免费 | 人妻有码中文字幕在线 | 国内揄拍国内精品人妻 | 国产亲子乱弄免费视频 | 国产成人无码午夜视频在线观看 | 久久综合给合久久狠狠狠97色 | 伊人久久大香线蕉午夜 | 国产又粗又硬又大爽黄老大爷视 | 日本爽爽爽爽爽爽在线观看免 | 1000部啪啪未满十八勿入下载 | 成熟人妻av无码专区 | 欧美日韩人成综合在线播放 | 黑人大群体交免费视频 | 亚洲伊人久久精品影院 | 精品乱码久久久久久久 | 亚洲啪av永久无码精品放毛片 | 中文精品无码中文字幕无码专区 | 国产特级毛片aaaaaa高潮流水 | 欧美xxxxx精品 | 日韩精品乱码av一区二区 | 动漫av网站免费观看 | www国产亚洲精品久久久日本 | 中国大陆精品视频xxxx | 人妻无码αv中文字幕久久琪琪布 | 亚洲 另类 在线 欧美 制服 | 免费观看的无遮挡av | 无套内谢老熟女 | 性啪啪chinese东北女人 | 精品国产av色一区二区深夜久久 | 国产莉萝无码av在线播放 | 亚洲精品国偷拍自产在线观看蜜桃 | 无码人妻丰满熟妇区毛片18 | 亚洲va中文字幕无码久久不卡 | 亚洲中文字幕在线观看 | 日韩精品乱码av一区二区 | 中文字幕中文有码在线 | 国产av无码专区亚洲awww | 人人爽人人澡人人人妻 | 欧美午夜特黄aaaaaa片 | 亚洲区欧美区综合区自拍区 | 欧美人与物videos另类 | 最新版天堂资源中文官网 | www国产亚洲精品久久久日本 | 久久久久久亚洲精品a片成人 | 51国偷自产一区二区三区 | 一本久道久久综合婷婷五月 | 婷婷五月综合激情中文字幕 | 久久精品中文字幕大胸 | 精品国产一区二区三区四区在线看 | 清纯唯美经典一区二区 | 日韩亚洲欧美中文高清在线 | 成熟人妻av无码专区 | 久久久久久av无码免费看大片 | a在线亚洲男人的天堂 | 国产特级毛片aaaaaaa高清 | 精品欧美一区二区三区久久久 | 精品无码一区二区三区的天堂 | 中文精品无码中文字幕无码专区 | 内射巨臀欧美在线视频 | www国产亚洲精品久久网站 | 色爱情人网站 | 日本精品高清一区二区 | 人妻少妇精品无码专区动漫 | 男人的天堂2018无码 | 亚洲色欲色欲天天天www | 无遮挡国产高潮视频免费观看 | 国语自产偷拍精品视频偷 | 国产精品-区区久久久狼 | 又大又黄又粗又爽的免费视频 | 99久久人妻精品免费二区 | 99精品无人区乱码1区2区3区 | 一本久道久久综合婷婷五月 | 欧美人与动性行为视频 | 亚洲 a v无 码免 费 成 人 a v | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 久久亚洲精品成人无码 | 久久久精品欧美一区二区免费 | 亚洲国产精品久久久天堂 | 日日摸夜夜摸狠狠摸婷婷 | 国产在线精品一区二区高清不卡 | 国产亚洲精品久久久久久 | 少妇邻居内射在线 | 精品一区二区三区波多野结衣 | 欧美精品一区二区精品久久 | 亚洲精品国产精品乱码视色 | 在线观看免费人成视频 | 国产精品久久久久7777 | 人妻少妇被猛烈进入中文字幕 | 无人区乱码一区二区三区 | 久久久久久av无码免费看大片 | 国产亚洲美女精品久久久2020 | 草草网站影院白丝内射 | 成人欧美一区二区三区 | 中文字幕色婷婷在线视频 | 国产免费久久久久久无码 | 少妇邻居内射在线 | 亚洲色偷偷偷综合网 | 成人精品天堂一区二区三区 | 中文精品无码中文字幕无码专区 | 国产精品视频免费播放 | 亚洲日韩乱码中文无码蜜桃臀网站 | 久久久久久a亚洲欧洲av冫 | 国产精品99久久精品爆乳 | 精品久久综合1区2区3区激情 | 成人av无码一区二区三区 | aⅴ亚洲 日韩 色 图网站 播放 | 亚洲综合精品香蕉久久网 | 又黄又爽又色的视频 | 野狼第一精品社区 | 黑森林福利视频导航 | 色偷偷人人澡人人爽人人模 | 免费男性肉肉影院 | 色情久久久av熟女人妻网站 | 无码精品国产va在线观看dvd | 亚洲无人区一区二区三区 | 欧美兽交xxxx×视频 | 亚洲国产精品成人久久蜜臀 | 麻豆md0077饥渴少妇 | 国产成人一区二区三区别 | 中文亚洲成a人片在线观看 | 小鲜肉自慰网站xnxx | 亚洲热妇无码av在线播放 | 水蜜桃亚洲一二三四在线 | 色婷婷久久一区二区三区麻豆 | 国产av无码专区亚洲awww | 亚洲国产精品一区二区第一页 | 久久精品国产大片免费观看 | 久激情内射婷内射蜜桃人妖 | 久久人人97超碰a片精品 | 欧美老熟妇乱xxxxx | 国产色xx群视频射精 | 日韩人妻少妇一区二区三区 | 人人妻人人澡人人爽人人精品浪潮 | 激情人妻另类人妻伦 | 欧美成人免费全部网站 | 国产sm调教视频在线观看 | 欧美高清在线精品一区 | 亚洲码国产精品高潮在线 | 日韩人妻少妇一区二区三区 | 精品国产麻豆免费人成网站 | 国产精品二区一区二区aⅴ污介绍 | 国产电影无码午夜在线播放 | 亚洲天堂2017无码中文 | 国产精品久久久久无码av色戒 | 日韩人妻无码一区二区三区久久99 | 免费播放一区二区三区 | 天堂亚洲免费视频 | 少妇高潮喷潮久久久影院 | 欧美丰满熟妇xxxx性ppx人交 | 久久99精品久久久久久 | 亚洲国产精品无码一区二区三区 | 在线观看欧美一区二区三区 | 亚洲熟妇色xxxxx亚洲 | 99麻豆久久久国产精品免费 | 久久亚洲中文字幕无码 | 久久久久久久女国产乱让韩 | 亚洲精品中文字幕 | 熟妇人妻中文av无码 | 日日麻批免费40分钟无码 | 日韩成人一区二区三区在线观看 | 奇米影视7777久久精品人人爽 | 国产激情综合五月久久 | 国产va免费精品观看 | 美女张开腿让人桶 | 理论片87福利理论电影 | 人人妻人人澡人人爽人人精品浪潮 | 一二三四在线观看免费视频 | 亚洲娇小与黑人巨大交 | 久久精品中文闷骚内射 | 秋霞特色aa大片 | 国产女主播喷水视频在线观看 | 久久精品人人做人人综合 | 中文字幕无线码免费人妻 | 牲交欧美兽交欧美 | 欧美成人免费全部网站 | 乌克兰少妇性做爰 | 日韩人妻无码一区二区三区久久99 | 国产成人精品视频ⅴa片软件竹菊 | 狠狠cao日日穞夜夜穞av | 一二三四社区在线中文视频 | 亚洲精品午夜无码电影网 | 亚洲国产精品一区二区美利坚 | 学生妹亚洲一区二区 | 88国产精品欧美一区二区三区 | 一个人看的视频www在线 | 97精品国产97久久久久久免费 | 人妻无码久久精品人妻 | 亚洲日韩中文字幕在线播放 | 性做久久久久久久久 | 国产日产欧产精品精品app | 撕开奶罩揉吮奶头视频 | 人人澡人人透人人爽 | 欧美亚洲日韩国产人成在线播放 | 久久综合狠狠综合久久综合88 | 久久精品国产一区二区三区 | 国产乱人伦av在线无码 | 狠狠色丁香久久婷婷综合五月 | 国产农村妇女高潮大叫 | 久久99精品国产麻豆蜜芽 | 国产亚洲精品久久久ai换 | 一本加勒比波多野结衣 | 国产精品自产拍在线观看 | 国产午夜亚洲精品不卡下载 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 精品无码成人片一区二区98 | 极品嫩模高潮叫床 | 又粗又大又硬又长又爽 | 国产精品理论片在线观看 | 曰本女人与公拘交酡免费视频 | 少妇一晚三次一区二区三区 | 亚洲无人区午夜福利码高清完整版 | 精品偷拍一区二区三区在线看 | 伦伦影院午夜理论片 | 亚洲gv猛男gv无码男同 | 久在线观看福利视频 | 台湾无码一区二区 | 狠狠色噜噜狠狠狠7777奇米 | 又大又紧又粉嫩18p少妇 | 中文毛片无遮挡高清免费 | 久久国产精品_国产精品 | 欧美一区二区三区视频在线观看 | 免费人成网站视频在线观看 | 白嫩日本少妇做爰 | 激情综合激情五月俺也去 | 亚洲成a人片在线观看日本 | 亚洲精品久久久久久一区二区 | 人妻体内射精一区二区三四 | 亚洲理论电影在线观看 | 亚洲综合精品香蕉久久网 | 亚洲啪av永久无码精品放毛片 | 自拍偷自拍亚洲精品被多人伦好爽 | 熟妇人妻无码xxx视频 | 国产精品内射视频免费 | 国产精品毛多多水多 | 亚洲人成影院在线无码按摩店 | 色婷婷av一区二区三区之红樱桃 | 中文字幕av日韩精品一区二区 | 日日碰狠狠躁久久躁蜜桃 | 2020久久超碰国产精品最新 | 黑森林福利视频导航 | 亚洲狠狠色丁香婷婷综合 | 国产精品无码mv在线观看 | 国产午夜亚洲精品不卡 | 国产欧美精品一区二区三区 | 日本大乳高潮视频在线观看 | 青青草原综合久久大伊人精品 | 国产精品久久国产三级国 | 中文字幕中文有码在线 | 1000部夫妻午夜免费 | 中文字幕无码av激情不卡 | 国产精品高潮呻吟av久久4虎 | 人妻尝试又大又粗久久 | 天堂а√在线中文在线 | 麻豆av传媒蜜桃天美传媒 | 国产猛烈高潮尖叫视频免费 | 伊人久久大香线焦av综合影院 | 男女超爽视频免费播放 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 99精品无人区乱码1区2区3区 | 亚洲精品国产品国语在线观看 | 久久久精品国产sm最大网站 | 亚拍精品一区二区三区探花 | 麻豆av传媒蜜桃天美传媒 | 国产精品久久国产精品99 | 精品无人国产偷自产在线 | 午夜无码区在线观看 | 荫蒂被男人添的好舒服爽免费视频 | 99久久久无码国产精品免费 | 亚洲精品成人av在线 | 亚洲男女内射在线播放 | 久热国产vs视频在线观看 | 国产热a欧美热a在线视频 | 精品无码一区二区三区爱欲 | 秋霞成人午夜鲁丝一区二区三区 | 丰满少妇人妻久久久久久 | 欧美一区二区三区视频在线观看 | 国产精品亚洲lv粉色 | 麻花豆传媒剧国产免费mv在线 | 99久久人妻精品免费二区 | 国产又爽又黄又刺激的视频 | 一二三四社区在线中文视频 | 久久午夜无码鲁丝片 | 国产精品沙发午睡系列 | aⅴ亚洲 日韩 色 图网站 播放 | 国产明星裸体无码xxxx视频 | 国产成人无码午夜视频在线观看 | 鲁一鲁av2019在线 | 国产在线精品一区二区高清不卡 | 亚洲s码欧洲m码国产av | 久久午夜无码鲁丝片秋霞 | 国产极品视觉盛宴 | 亚洲爆乳精品无码一区二区三区 | 久久zyz资源站无码中文动漫 | 国产精品久久久av久久久 | 性生交大片免费看l | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 亚洲人成影院在线无码按摩店 | 麻豆精品国产精华精华液好用吗 | 国产人妻人伦精品1国产丝袜 | 欧美乱妇无乱码大黄a片 | 色噜噜亚洲男人的天堂 | 亚洲精品国偷拍自产在线麻豆 | 国色天香社区在线视频 | 狠狠cao日日穞夜夜穞av | 亚洲一区二区三区含羞草 | 久久99国产综合精品 | 亚洲国产精品美女久久久久 | 国产综合色产在线精品 | 日韩少妇内射免费播放 | 午夜福利试看120秒体验区 | 亚洲中文字幕在线无码一区二区 | 久久久久成人片免费观看蜜芽 | 亚洲精品一区二区三区在线观看 | 乱码午夜-极国产极内射 | 久久久久久久女国产乱让韩 | 2020久久超碰国产精品最新 | 日日碰狠狠躁久久躁蜜桃 | 久久99精品国产.久久久久 | 欧美变态另类xxxx | 国产手机在线αⅴ片无码观看 | 亚洲一区av无码专区在线观看 | 无码一区二区三区在线观看 | 欧美三级不卡在线观看 | 美女毛片一区二区三区四区 | 国产av剧情md精品麻豆 | 欧美熟妇另类久久久久久多毛 | 乌克兰少妇性做爰 | 色 综合 欧美 亚洲 国产 | 国产高清不卡无码视频 | 国产精品久久国产精品99 | aa片在线观看视频在线播放 | 亚洲午夜久久久影院 | 在线欧美精品一区二区三区 | 少妇被黑人到高潮喷出白浆 | 久久久亚洲欧洲日产国码αv | 装睡被陌生人摸出水好爽 | 99久久精品午夜一区二区 | 亚洲乱亚洲乱妇50p | 婷婷综合久久中文字幕蜜桃三电影 | 午夜精品一区二区三区的区别 | av在线亚洲欧洲日产一区二区 | 国产成人精品必看 | 欧美人妻一区二区三区 | 欧美熟妇另类久久久久久不卡 | 少妇无码吹潮 | 无码人妻丰满熟妇区五十路百度 | 色欲久久久天天天综合网精品 | 一二三四社区在线中文视频 | 丰腴饱满的极品熟妇 | 国产高潮视频在线观看 | 亚洲国产精品一区二区美利坚 | 中文字幕无码免费久久9一区9 | 无码国产激情在线观看 | 久久99热只有频精品8 | 久久午夜无码鲁丝片秋霞 | 国产精品内射视频免费 | 国产九九九九九九九a片 | 最近免费中文字幕中文高清百度 | 亚洲日韩中文字幕在线播放 | 熟女俱乐部五十路六十路av | 久久久久久久久888 | 少妇一晚三次一区二区三区 | 国产精品久久久久久亚洲毛片 | 九一九色国产 | 日韩精品一区二区av在线 | a片免费视频在线观看 | 中文字幕无码日韩专区 | 国产黑色丝袜在线播放 | 成 人 免费观看网站 | 国语自产偷拍精品视频偷 | 九九在线中文字幕无码 | 亚洲日本在线电影 | 亚洲区欧美区综合区自拍区 | 亚洲日韩精品欧美一区二区 | 国产亚洲tv在线观看 | 性生交大片免费看l | 国产亚洲精品久久久久久久 | 强开小婷嫩苞又嫩又紧视频 | 无套内谢老熟女 | 国产人妻精品一区二区三区不卡 | 欧美真人作爱免费视频 | 国产乱人伦偷精品视频 | 久久国产精品偷任你爽任你 | 久久久成人毛片无码 | 樱花草在线社区www | 国产人妻精品一区二区三区不卡 | 东京热一精品无码av | 国产欧美精品一区二区三区 | 55夜色66夜色国产精品视频 | 久久99精品久久久久久 | 国产性生大片免费观看性 | 免费乱码人妻系列无码专区 | 麻豆精品国产精华精华液好用吗 | 国内精品九九久久久精品 | 国产sm调教视频在线观看 | 中文字幕无码人妻少妇免费 | 国产成人人人97超碰超爽8 | 无码精品国产va在线观看dvd | 亚洲综合无码久久精品综合 | 小泽玛莉亚一区二区视频在线 | 内射巨臀欧美在线视频 | 国产精品成人av在线观看 | 一本加勒比波多野结衣 | 亚洲精品鲁一鲁一区二区三区 | 免费人成网站视频在线观看 | 色一情一乱一伦一区二区三欧美 | 女人色极品影院 | a在线观看免费网站大全 | 国产精品无码mv在线观看 | 欧美怡红院免费全部视频 | 亚洲小说春色综合另类 | 高清不卡一区二区三区 | 久久无码专区国产精品s | 人妻与老人中文字幕 | 久久精品国产99精品亚洲 | 亚洲精品一区二区三区大桥未久 | 欧美性黑人极品hd | 亚洲中文字幕乱码av波多ji | 中文精品久久久久人妻不卡 | 午夜不卡av免费 一本久久a久久精品vr综合 | 特黄特色大片免费播放器图片 | 亚洲色偷偷偷综合网 | 午夜理论片yy44880影院 | 国产真实乱对白精彩久久 | 一本久久a久久精品亚洲 | 国产亚洲欧美日韩亚洲中文色 | 亚洲爆乳精品无码一区二区三区 | 一二三四社区在线中文视频 | 夜夜夜高潮夜夜爽夜夜爰爰 | 娇妻被黑人粗大高潮白浆 | 少妇无码av无码专区在线观看 | 中文精品无码中文字幕无码专区 | 免费国产成人高清在线观看网站 | 国产乱子伦视频在线播放 | 老熟妇乱子伦牲交视频 | 亚洲精品综合一区二区三区在线 | 少妇性l交大片 | 鲁一鲁av2019在线 | 亚洲中文字幕在线观看 | 久久久久国色av免费观看性色 | 成人一区二区免费视频 | 免费播放一区二区三区 | 帮老师解开蕾丝奶罩吸乳网站 | 中国女人内谢69xxxxxa片 | 一本加勒比波多野结衣 | 色婷婷av一区二区三区之红樱桃 | 久久无码中文字幕免费影院蜜桃 | 露脸叫床粗话东北少妇 | 国产内射爽爽大片视频社区在线 | 国内丰满熟女出轨videos | 特黄特色大片免费播放器图片 | 麻豆人妻少妇精品无码专区 | 久久久精品欧美一区二区免费 | 亚洲国产成人av在线观看 | 国产人妻精品一区二区三区不卡 | 97se亚洲精品一区 | 精品日本一区二区三区在线观看 | 欧美人与禽zoz0性伦交 | 欧美三级a做爰在线观看 | 亚洲精品国产a久久久久久 | 人人妻人人澡人人爽欧美一区 | 性做久久久久久久久 | 18精品久久久无码午夜福利 | 亚洲色欲色欲天天天www | 久久zyz资源站无码中文动漫 | 亚洲综合在线一区二区三区 | 中文字幕无码人妻少妇免费 | 亚洲欧美中文字幕5发布 | 日本精品人妻无码77777 天堂一区人妻无码 | 青草青草久热国产精品 | 亚洲中文字幕在线无码一区二区 | 国产精品99久久精品爆乳 | 久久久久成人精品免费播放动漫 | 久久亚洲日韩精品一区二区三区 | 亚洲国产精品毛片av不卡在线 | 国产人妖乱国产精品人妖 | 亚无码乱人伦一区二区 | 色婷婷久久一区二区三区麻豆 | 无码国内精品人妻少妇 | 久久精品成人欧美大片 | yw尤物av无码国产在线观看 | 一二三四在线观看免费视频 | 亚洲经典千人经典日产 | 国产激情无码一区二区app | 精品熟女少妇av免费观看 | 欧美熟妇另类久久久久久多毛 | 亚洲精品一区二区三区在线观看 | 欧美成人免费全部网站 | 久久99精品国产麻豆蜜芽 | 国产成人精品一区二区在线小狼 | 久久久精品国产sm最大网站 | 国产午夜亚洲精品不卡下载 | 日韩av无码中文无码电影 | 97精品国产97久久久久久免费 | 撕开奶罩揉吮奶头视频 | 久久99精品国产麻豆 | 精品国产乱码久久久久乱码 | 国产午夜福利100集发布 | 麻花豆传媒剧国产免费mv在线 | 亚洲成在人网站无码天堂 | 久久亚洲精品中文字幕无男同 | 久久www免费人成人片 | 麻豆人妻少妇精品无码专区 | 久久午夜无码鲁丝片 | 国产av一区二区精品久久凹凸 | 久久熟妇人妻午夜寂寞影院 | 国产av一区二区三区最新精品 | 免费人成在线视频无码 | 999久久久国产精品消防器材 | 欧美自拍另类欧美综合图片区 | 熟妇激情内射com | 99久久人妻精品免费二区 | 人人爽人人澡人人高潮 | 国产亲子乱弄免费视频 | 一本色道久久综合狠狠躁 | 人人澡人人透人人爽 | 久久精品无码一区二区三区 | 性色欲情网站iwww九文堂 | 久久综合狠狠综合久久综合88 | 老司机亚洲精品影院 | 奇米影视888欧美在线观看 | 国产农村妇女高潮大叫 | 三上悠亚人妻中文字幕在线 | 亚洲无人区一区二区三区 | 亚洲国产av精品一区二区蜜芽 | 久久亚洲精品成人无码 | 国产午夜福利亚洲第一 | 国产成人精品视频ⅴa片软件竹菊 | 老子影院午夜精品无码 | 精品人妻人人做人人爽夜夜爽 | 亚洲人亚洲人成电影网站色 | 亚洲娇小与黑人巨大交 | 精品国产精品久久一区免费式 | 激情内射日本一区二区三区 | 成人一在线视频日韩国产 | 久久久久av无码免费网 | 午夜精品久久久久久久 | 奇米影视888欧美在线观看 | 精品国产一区av天美传媒 | 帮老师解开蕾丝奶罩吸乳网站 | 国产高潮视频在线观看 | 欧美精品无码一区二区三区 | 丝袜足控一区二区三区 | 欧美日韩视频无码一区二区三 | 巨爆乳无码视频在线观看 | 99在线 | 亚洲 | 国语精品一区二区三区 | 在教室伦流澡到高潮hnp视频 | 熟妇激情内射com | 成在人线av无码免观看麻豆 | 99精品久久毛片a片 | 国产又粗又硬又大爽黄老大爷视 | 国产又爽又黄又刺激的视频 | 大屁股大乳丰满人妻 | 国产亚洲视频中文字幕97精品 | 国产无av码在线观看 | 亚洲国产欧美日韩精品一区二区三区 | 丝袜足控一区二区三区 | 欧美亚洲日韩国产人成在线播放 | 国产真实伦对白全集 | 人妻无码αv中文字幕久久琪琪布 | 日本大乳高潮视频在线观看 | 国产精品高潮呻吟av久久4虎 | 国产小呦泬泬99精品 | 日本一本二本三区免费 | 日本精品高清一区二区 | 国产97人人超碰caoprom | 婷婷色婷婷开心五月四房播播 | 狠狠躁日日躁夜夜躁2020 | 久久综合久久自在自线精品自 | 国产免费无码一区二区视频 | 亚洲aⅴ无码成人网站国产app | 国产午夜亚洲精品不卡下载 | 亚洲精品午夜国产va久久成人 | 国产亚洲日韩欧美另类第八页 | 激情内射亚州一区二区三区爱妻 | 99精品视频在线观看免费 | 曰韩少妇内射免费播放 | 亚洲呦女专区 | 成人欧美一区二区三区 | 中文字幕无码av波多野吉衣 | 精品国产麻豆免费人成网站 | 久久 国产 尿 小便 嘘嘘 | 正在播放东北夫妻内射 | 亚洲一区二区三区偷拍女厕 | 亚洲欧美国产精品久久 | 沈阳熟女露脸对白视频 | 国产舌乚八伦偷品w中 | 免费播放一区二区三区 | 午夜精品久久久久久久 | 最近中文2019字幕第二页 | 亚洲国产精品成人久久蜜臀 | 中文毛片无遮挡高清免费 | 国产国语老龄妇女a片 | 欧美丰满熟妇xxxx性ppx人交 | 精品久久久久久人妻无码中文字幕 | 特大黑人娇小亚洲女 | 成人三级无码视频在线观看 | 亚洲人亚洲人成电影网站色 | 国产精品高潮呻吟av久久4虎 | 国内综合精品午夜久久资源 | 国产在线一区二区三区四区五区 | 精品国产aⅴ无码一区二区 | 国产国语老龄妇女a片 | 5858s亚洲色大成网站www | 国产精品理论片在线观看 | 无码国产乱人伦偷精品视频 | 亚洲第一无码av无码专区 | 日本肉体xxxx裸交 | 无码一区二区三区在线观看 | 色综合天天综合狠狠爱 | 亚洲人成影院在线无码按摩店 | 伊人色综合久久天天小片 | 99久久亚洲精品无码毛片 | 图片区 小说区 区 亚洲五月 | 又紧又大又爽精品一区二区 | 国语自产偷拍精品视频偷 | 亚洲精品成人福利网站 | 国精产品一品二品国精品69xx | 狠狠色色综合网站 | 欧美野外疯狂做受xxxx高潮 | 无码av岛国片在线播放 | 天天摸天天透天天添 | 亚洲精品一区二区三区婷婷月 | 久久久久久av无码免费看大片 | 成人综合网亚洲伊人 | 欧美一区二区三区视频在线观看 | 国产区女主播在线观看 | 国内揄拍国内精品少妇国语 | 中文字幕无码乱人伦 | 99麻豆久久久国产精品免费 | 老司机亚洲精品影院无码 | 无码任你躁久久久久久久 | 精品久久8x国产免费观看 | 日韩精品一区二区av在线 | 欧美熟妇另类久久久久久不卡 | 欧美老熟妇乱xxxxx | 国产精品无码一区二区三区不卡 | 人妻aⅴ无码一区二区三区 | аⅴ资源天堂资源库在线 | 欧美日韩在线亚洲综合国产人 | 国产精品久久久 | 国产另类ts人妖一区二区 | 中文字幕人妻丝袜二区 | 亚洲一区二区三区含羞草 | 三级4级全黄60分钟 | 大肉大捧一进一出视频出来呀 | 女人高潮内射99精品 | 亚洲国产精品无码久久久久高潮 | 国产精品无码一区二区桃花视频 | 美女毛片一区二区三区四区 | 国产卡一卡二卡三 | 樱花草在线社区www | 国产成人精品无码播放 | 中文精品久久久久人妻不卡 | 好屌草这里只有精品 | av无码不卡在线观看免费 | 强辱丰满人妻hd中文字幕 | 色欲av亚洲一区无码少妇 | 99国产精品白浆在线观看免费 | 少妇愉情理伦片bd | 爱做久久久久久 | 亚洲乱码中文字幕在线 | 强奷人妻日本中文字幕 | 色欲综合久久中文字幕网 | 99国产精品白浆在线观看免费 | www一区二区www免费 | 乱人伦人妻中文字幕无码久久网 | 欧洲熟妇色 欧美 | ass日本丰满熟妇pics | 亚洲 欧美 激情 小说 另类 | 日本在线高清不卡免费播放 | 水蜜桃av无码 | 色欲综合久久中文字幕网 | 红桃av一区二区三区在线无码av | 成人精品一区二区三区中文字幕 | 好屌草这里只有精品 | 图片小说视频一区二区 | 亚洲精品一区二区三区婷婷月 | 国产偷抇久久精品a片69 | 成年美女黄网站色大免费视频 | a在线亚洲男人的天堂 | 久久精品人人做人人综合 | 欧美性生交活xxxxxdddd | 久久天天躁夜夜躁狠狠 | 又黄又爽又色的视频 | 男人和女人高潮免费网站 | 国产亚洲人成在线播放 | 国产国产精品人在线视 | 狠狠亚洲超碰狼人久久 | 丁香花在线影院观看在线播放 | 日本va欧美va欧美va精品 | 国产成人人人97超碰超爽8 | 熟女少妇人妻中文字幕 | 免费国产黄网站在线观看 | 色爱情人网站 | 熟女俱乐部五十路六十路av | 中文字幕无码视频专区 | 日韩欧美成人免费观看 | 丝袜人妻一区二区三区 | 免费人成网站视频在线观看 | 狠狠色欧美亚洲狠狠色www | 老子影院午夜精品无码 | 性欧美牲交xxxxx视频 | 中文字幕久久久久人妻 | 国产成人无码专区 | 丰满人妻精品国产99aⅴ | 噜噜噜亚洲色成人网站 | 熟妇人妻无码xxx视频 | 久久精品丝袜高跟鞋 | 亚洲国产av美女网站 | 国产精品资源一区二区 | 亚洲国产av精品一区二区蜜芽 | 日本精品人妻无码77777 天堂一区人妻无码 | 亚洲狠狠色丁香婷婷综合 | а√天堂www在线天堂小说 | 红桃av一区二区三区在线无码av | 国内精品人妻无码久久久影院蜜桃 | 国产日产欧产精品精品app | 亚洲欧美中文字幕5发布 | 国内精品九九久久久精品 | 精品久久综合1区2区3区激情 | 人人妻人人澡人人爽欧美一区九九 | 久久精品中文字幕一区 | 久久人妻内射无码一区三区 | 九九久久精品国产免费看小说 | 亚洲自偷精品视频自拍 | 亚洲精品综合五月久久小说 | 女人被男人躁得好爽免费视频 | 亚洲精品综合一区二区三区在线 | 久久精品中文字幕一区 | 东京一本一道一二三区 | 国产成人无码av一区二区 | 岛国片人妻三上悠亚 | 亚洲va欧美va天堂v国产综合 | 国产精品久久久 | 日本免费一区二区三区最新 | 免费男性肉肉影院 | 熟妇人妻中文av无码 | 3d动漫精品啪啪一区二区中 | 国产精品va在线观看无码 | 午夜无码人妻av大片色欲 | 久久久精品成人免费观看 | 国产午夜视频在线观看 | av无码电影一区二区三区 | 无码吃奶揉捏奶头高潮视频 | 在线播放无码字幕亚洲 | 国产精品久久久久久亚洲毛片 | 国产特级毛片aaaaaa高潮流水 | 久久aⅴ免费观看 | 无码av中文字幕免费放 | 日本精品少妇一区二区三区 | 纯爱无遮挡h肉动漫在线播放 | 4hu四虎永久在线观看 | 亚洲区欧美区综合区自拍区 | 国产精品毛多多水多 | 无码福利日韩神码福利片 | 精品一区二区不卡无码av | 日产国产精品亚洲系列 | 亚洲 另类 在线 欧美 制服 | 国产性生交xxxxx无码 | 国产成人久久精品流白浆 | √8天堂资源地址中文在线 | 99久久久无码国产精品免费 | 精品久久综合1区2区3区激情 | 免费中文字幕日韩欧美 | 日日摸天天摸爽爽狠狠97 | 成人精品一区二区三区中文字幕 | 国产真实乱对白精彩久久 | 麻豆人妻少妇精品无码专区 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 日本欧美一区二区三区乱码 | 日本精品久久久久中文字幕 | 97夜夜澡人人爽人人喊中国片 | 蜜桃av抽搐高潮一区二区 | 日韩精品无码免费一区二区三区 | 狠狠综合久久久久综合网 | 国产午夜亚洲精品不卡 | 国产精品久久久久7777 | 亚洲男人av香蕉爽爽爽爽 | 成在人线av无码免观看麻豆 | 欧美三级a做爰在线观看 | 午夜丰满少妇性开放视频 | 精品夜夜澡人妻无码av蜜桃 | 国产亚洲人成a在线v网站 | 东京热男人av天堂 | 国精品人妻无码一区二区三区蜜柚 | 久久五月精品中文字幕 | 精品国精品国产自在久国产87 | 青春草在线视频免费观看 | 国产性生大片免费观看性 | 精品一二三区久久aaa片 | 国产精品无码久久av | 国产 精品 自在自线 | 亚洲综合无码久久精品综合 | 97精品国产97久久久久久免费 | 久久亚洲中文字幕精品一区 | 97无码免费人妻超级碰碰夜夜 | 99riav国产精品视频 | 国语精品一区二区三区 | 欧美老妇交乱视频在线观看 | 国产乱子伦视频在线播放 | 亚洲男人av天堂午夜在 | 午夜丰满少妇性开放视频 | 亚洲の无码国产の无码影院 | 亚洲一区二区三区 | 帮老师解开蕾丝奶罩吸乳网站 | 国产人成高清在线视频99最全资源 | 97夜夜澡人人双人人人喊 | 青春草在线视频免费观看 | 天天摸天天透天天添 | 日本一卡二卡不卡视频查询 | 好屌草这里只有精品 | 国产熟妇高潮叫床视频播放 | 亚洲国产精品一区二区第一页 | 国产乱人伦偷精品视频 | 亚洲国产精品久久人人爱 | 中文字幕乱码亚洲无线三区 | 亚洲成熟女人毛毛耸耸多 | 国产综合久久久久鬼色 | 少妇无码一区二区二三区 | 国产精品对白交换视频 | 18无码粉嫩小泬无套在线观看 | 黑人巨大精品欧美一区二区 | 天堂久久天堂av色综合 | 色综合久久88色综合天天 | 日韩欧美中文字幕公布 | 免费国产黄网站在线观看 | 亚洲爆乳无码专区 | 四虎国产精品一区二区 | 国产美女精品一区二区三区 | 天天躁日日躁狠狠躁免费麻豆 | 精品久久综合1区2区3区激情 | 欧美精品一区二区精品久久 | 国产极品美女高潮无套在线观看 | 久久精品99久久香蕉国产色戒 | 国产网红无码精品视频 | 67194成是人免费无码 | 国内精品久久毛片一区二区 | 国产精品无码一区二区桃花视频 | ass日本丰满熟妇pics | 亚洲精品中文字幕久久久久 | 精品无码成人片一区二区98 | 欧美激情综合亚洲一二区 | 无码午夜成人1000部免费视频 | 国产精品无码成人午夜电影 | 精品欧洲av无码一区二区三区 | 2019午夜福利不卡片在线 | 欧美日本日韩 | 成 人 网 站国产免费观看 | 人人妻人人藻人人爽欧美一区 | 亚洲国产精品一区二区第一页 | 国产在线aaa片一区二区99 | 亚洲成av人影院在线观看 | 中文字幕 人妻熟女 | 任你躁在线精品免费 | 婷婷六月久久综合丁香 | 国产精品亚洲一区二区三区喷水 | 国产精品美女久久久 | 人人澡人人透人人爽 | 亚洲精品一区二区三区四区五区 | 精品人人妻人人澡人人爽人人 | 色婷婷欧美在线播放内射 | 亚洲人成网站免费播放 | 色一情一乱一伦一区二区三欧美 | 99久久精品国产一区二区蜜芽 | 熟妇人妻无码xxx视频 | 正在播放老肥熟妇露脸 | 少妇被黑人到高潮喷出白浆 | 色五月五月丁香亚洲综合网 | 亚洲第一无码av无码专区 | 全黄性性激高免费视频 | 国产卡一卡二卡三 | 精品欧美一区二区三区久久久 | 男人的天堂2018无码 | 日产精品高潮呻吟av久久 | 性开放的女人aaa片 | 丰满妇女强制高潮18xxxx | 日本护士毛茸茸高潮 | 日韩亚洲欧美中文高清在线 | 中国大陆精品视频xxxx | 色婷婷综合激情综在线播放 | 无码人妻黑人中文字幕 | 欧美日韩一区二区综合 | 人妻无码久久精品人妻 | 亚洲の无码国产の无码影院 | 久久综合九色综合97网 | 成人一区二区免费视频 | 亚洲欧美精品伊人久久 | 中文字幕无码av激情不卡 | 亚洲码国产精品高潮在线 | 欧美人与善在线com | 午夜精品久久久久久久久 | 永久免费观看国产裸体美女 | 国产精华av午夜在线观看 | 一本大道久久东京热无码av | 露脸叫床粗话东北少妇 | 国产97在线 | 亚洲 | 性生交大片免费看l | 大肉大捧一进一出好爽视频 | 国内精品久久久久久中文字幕 | 亚洲区小说区激情区图片区 | 国产情侣作爱视频免费观看 | 一本久道高清无码视频 | 日韩人妻系列无码专区 | 欧美国产亚洲日韩在线二区 | а√天堂www在线天堂小说 | 又湿又紧又大又爽a视频国产 | 人人妻人人澡人人爽欧美一区 | 人人妻人人澡人人爽人人精品 | 中文字幕乱码人妻无码久久 | 久久久久久a亚洲欧洲av冫 | 国产农村妇女高潮大叫 | 午夜精品一区二区三区的区别 | 国产麻豆精品精东影业av网站 | 国产美女极度色诱视频www | 兔费看少妇性l交大片免费 | 天天综合网天天综合色 | 国产亚av手机在线观看 | 亚洲va欧美va天堂v国产综合 | 国产极品视觉盛宴 | 亚洲精品中文字幕乱码 | 欧美日韩视频无码一区二区三 | 中文亚洲成a人片在线观看 | 玩弄少妇高潮ⅹxxxyw | 久久99精品国产麻豆 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 亚洲啪av永久无码精品放毛片 | 精品久久久久久亚洲精品 | 欧美性生交活xxxxxdddd | 日韩人妻系列无码专区 | 美女黄网站人色视频免费国产 | 亚洲精品一区三区三区在线观看 | 76少妇精品导航 | 亚洲自偷自拍另类第1页 | 强开小婷嫩苞又嫩又紧视频 | 日产国产精品亚洲系列 | 无码一区二区三区在线 | 99久久无码一区人妻 | 亚洲欧美中文字幕5发布 | 自拍偷自拍亚洲精品被多人伦好爽 | 日本精品久久久久中文字幕 | 国产亚洲tv在线观看 | 色妞www精品免费视频 | 国产真人无遮挡作爱免费视频 | 俺去俺来也www色官网 | 无码av免费一区二区三区试看 | 成人欧美一区二区三区 | 国产成人一区二区三区别 | 精品亚洲韩国一区二区三区 | 成人精品视频一区二区 | 99久久久无码国产精品免费 | 国产高清不卡无码视频 | 国产成人午夜福利在线播放 | 黑人大群体交免费视频 | 俺去俺来也www色官网 | 一本久久伊人热热精品中文字幕 | 久久综合久久自在自线精品自 | 中文字幕 亚洲精品 第1页 | 精品人妻人人做人人爽 | 亚洲成av人在线观看网址 | 宝宝好涨水快流出来免费视频 | 亚洲狠狠色丁香婷婷综合 | 自拍偷自拍亚洲精品被多人伦好爽 | 久久久久久av无码免费看大片 | 狠狠色丁香久久婷婷综合五月 | 99麻豆久久久国产精品免费 | 一本久道高清无码视频 | 人妻少妇精品无码专区二区 | 性开放的女人aaa片 | 国产精品第一国产精品 | 日韩精品成人一区二区三区 | 一本大道伊人av久久综合 | 青青久在线视频免费观看 | 色综合久久久无码中文字幕 | 亚洲国产欧美在线成人 | 大肉大捧一进一出视频出来呀 | 日日噜噜噜噜夜夜爽亚洲精品 | 久久国产精品偷任你爽任你 | 人人妻人人澡人人爽人人精品浪潮 | 婷婷丁香六月激情综合啪 | 亚洲天堂2017无码中文 | 国产亚洲日韩欧美另类第八页 | 亚洲欧洲日本综合aⅴ在线 | 亚洲欧洲日本无在线码 | 香蕉久久久久久av成人 | 无码毛片视频一区二区本码 | 久久久久久av无码免费看大片 | 亚洲第一无码av无码专区 | 成人无码视频免费播放 | 亚洲爆乳大丰满无码专区 | 国产成人无码区免费内射一片色欲 | 亚洲精品成人av在线 | 国色天香社区在线视频 | 国产午夜福利亚洲第一 | 自拍偷自拍亚洲精品被多人伦好爽 | 久久精品人人做人人综合 | 又黄又爽又色的视频 | 精品一区二区不卡无码av | 欧美 亚洲 国产 另类 | 无码播放一区二区三区 | 精品久久久久久人妻无码中文字幕 | 97无码免费人妻超级碰碰夜夜 | av人摸人人人澡人人超碰下载 | 亚洲精品国偷拍自产在线观看蜜桃 | 久久久成人毛片无码 | 国产精品无码一区二区桃花视频 | 国产特级毛片aaaaaaa高清 | 国产午夜福利100集发布 | 国产99久久精品一区二区 | 2019nv天堂香蕉在线观看 | 人人妻人人澡人人爽人人精品 | 婷婷六月久久综合丁香 | 久久久av男人的天堂 | 波多野结衣 黑人 | 97精品国产97久久久久久免费 | 国产人妖乱国产精品人妖 | 中文字幕无码免费久久9一区9 | 国产午夜亚洲精品不卡 | 综合人妻久久一区二区精品 | 免费无码肉片在线观看 | 无码人妻出轨黑人中文字幕 | 人妻尝试又大又粗久久 | 老司机亚洲精品影院无码 | 俺去俺来也www色官网 | 老头边吃奶边弄进去呻吟 | 色婷婷香蕉在线一区二区 | 国产成人精品久久亚洲高清不卡 | 免费乱码人妻系列无码专区 | 亚洲中文字幕久久无码 | 精品国产成人一区二区三区 | 色 综合 欧美 亚洲 国产 | а√天堂www在线天堂小说 | 亚洲第一网站男人都懂 | 国产精品无码一区二区桃花视频 | 乱人伦人妻中文字幕无码 | 国产乱子伦视频在线播放 | 亚洲精品国产精品乱码视色 | 国产精品久久久久久无码 | 无码av岛国片在线播放 | 国产精品对白交换视频 | 亚洲精品午夜国产va久久成人 | 性欧美熟妇videofreesex | 成人性做爰aaa片免费看不忠 | 国产在热线精品视频 | 又大又硬又黄的免费视频 | 国产精品亚洲专区无码不卡 | 国产精品自产拍在线观看 | 国产亚洲tv在线观看 | 欧洲熟妇精品视频 | 成人无码精品一区二区三区 | 欧美成人免费全部网站 | 精品少妇爆乳无码av无码专区 | 大肉大捧一进一出视频出来呀 | 成人一在线视频日韩国产 | 亚洲人成网站在线播放942 | 人妻插b视频一区二区三区 | 欧美国产日产一区二区 | 一本久道高清无码视频 | 领导边摸边吃奶边做爽在线观看 | 女人被爽到呻吟gif动态图视看 | 综合激情五月综合激情五月激情1 | 黑森林福利视频导航 | 国产亚洲视频中文字幕97精品 | www国产亚洲精品久久网站 | 国产成人午夜福利在线播放 | 国产肉丝袜在线观看 | 国产精品对白交换视频 | 国产精品丝袜黑色高跟鞋 | 色五月丁香五月综合五月 | 中文字幕中文有码在线 | 88国产精品欧美一区二区三区 | 美女毛片一区二区三区四区 | 99久久精品无码一区二区毛片 | 欧美精品无码一区二区三区 | 亚洲大尺度无码无码专区 | 少妇愉情理伦片bd | 丝袜 中出 制服 人妻 美腿 | 色婷婷av一区二区三区之红樱桃 | 亚洲国产av精品一区二区蜜芽 | 亚洲理论电影在线观看 | 欧美激情内射喷水高潮 | 婷婷色婷婷开心五月四房播播 | 中文字幕乱码亚洲无线三区 | 亚洲 另类 在线 欧美 制服 | 对白脏话肉麻粗话av | 中文字幕久久久久人妻 | √天堂中文官网8在线 | 久久久精品欧美一区二区免费 | 亚洲色偷偷男人的天堂 | 精品久久久久久人妻无码中文字幕 | 人人爽人人澡人人人妻 | 国产精品久久久午夜夜伦鲁鲁 | 久久伊人色av天堂九九小黄鸭 | 日本欧美一区二区三区乱码 | 免费男性肉肉影院 | 男人的天堂av网站 | 亚洲精品一区二区三区大桥未久 | 日本精品久久久久中文字幕 | 蜜桃臀无码内射一区二区三区 | 精品人妻av区 | 丁香花在线影院观看在线播放 | 超碰97人人做人人爱少妇 | 强辱丰满人妻hd中文字幕 | 亚洲日韩精品欧美一区二区 | 亚无码乱人伦一区二区 | 久久精品人妻少妇一区二区三区 | 狠狠综合久久久久综合网 | 国产真实夫妇视频 | 国产综合在线观看 | 亚洲精品国产品国语在线观看 | 国产乱子伦视频在线播放 | 99久久精品日本一区二区免费 | 亚洲精品中文字幕久久久久 | 国产精品永久免费视频 | 久久久久久久久888 | 初尝人妻少妇中文字幕 | 亚洲国产成人av在线观看 | 97无码免费人妻超级碰碰夜夜 | 亚洲一区二区三区播放 | 2020最新国产自产精品 | 久久人妻内射无码一区三区 | 天干天干啦夜天干天2017 | 亚洲精品国偷拍自产在线观看蜜桃 | 麻豆果冻传媒2021精品传媒一区下载 | 亚洲国产欧美日韩精品一区二区三区 | 少妇的肉体aa片免费 | 成熟女人特级毛片www免费 | 国内综合精品午夜久久资源 | 永久免费精品精品永久-夜色 | www成人国产高清内射 | 欧美日韩综合一区二区三区 | 国产成人精品三级麻豆 | 日韩无套无码精品 | 亚洲色大成网站www | 骚片av蜜桃精品一区 | 亚洲 欧美 激情 小说 另类 | 国产精品人人爽人人做我的可爱 | 国产精品va在线观看无码 | 亚洲一区二区三区播放 | 久久成人a毛片免费观看网站 | 伊人久久大香线蕉亚洲 | 波多野结衣高清一区二区三区 | 熟妇人妻无乱码中文字幕 | 无码人妻av免费一区二区三区 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲 激情 小说 另类 欧美 | 欧美freesex黑人又粗又大 | 欧美精品在线观看 | 男女超爽视频免费播放 | 国产高潮视频在线观看 | 亚洲a无码综合a国产av中文 | 狠狠躁日日躁夜夜躁2020 | 国产激情无码一区二区app | 国产艳妇av在线观看果冻传媒 | 婷婷综合久久中文字幕蜜桃三电影 | 国产亚洲精品久久久ai换 | 国内精品人妻无码久久久影院蜜桃 | 国产成人无码av在线影院 | 内射后入在线观看一区 | 中文亚洲成a人片在线观看 | 理论片87福利理论电影 | 国产亚洲精品久久久久久久久动漫 | 亚洲精品国产a久久久久久 | 少妇无码av无码专区在线观看 | 国产 精品 自在自线 | 久久人人97超碰a片精品 | 4hu四虎永久在线观看 | 全黄性性激高免费视频 | 撕开奶罩揉吮奶头视频 | 亚洲中文字幕av在天堂 | 久久精品99久久香蕉国产色戒 | 成在人线av无码免费 | 黑人巨大精品欧美一区二区 | 网友自拍区视频精品 | 国产人妖乱国产精品人妖 | 亚洲国产精品久久久天堂 | 性色av无码免费一区二区三区 | 亚洲狠狠婷婷综合久久 | 婷婷五月综合激情中文字幕 | 成年美女黄网站色大免费视频 | 在线а√天堂中文官网 | 国产日产欧产精品精品app | 精品国产一区二区三区四区 | 国产色xx群视频射精 | 亚洲综合另类小说色区 | 日本爽爽爽爽爽爽在线观看免 | 亚洲无人区一区二区三区 | 四虎国产精品一区二区 | 国产成人一区二区三区在线观看 | 最新国产乱人伦偷精品免费网站 | 精品久久久无码人妻字幂 | 成人精品视频一区二区三区尤物 | 少妇性荡欲午夜性开放视频剧场 | 亚洲熟悉妇女xxx妇女av | 欧美 日韩 亚洲 在线 | 久久综合九色综合欧美狠狠 | 国产 浪潮av性色四虎 | 日本熟妇大屁股人妻 | 国产精品自产拍在线观看 | 国产绳艺sm调教室论坛 | 精品成人av一区二区三区 | 日本www一道久久久免费榴莲 | 99精品无人区乱码1区2区3区 | 亚洲国产综合无码一区 | 国产精品亚洲lv粉色 | 国产成人av免费观看 | 国产一区二区三区四区五区加勒比 | 骚片av蜜桃精品一区 | 无码乱肉视频免费大全合集 | 久久精品一区二区三区四区 | 国产精品久久国产三级国 | 欧美高清在线精品一区 | 日本成熟视频免费视频 | 67194成是人免费无码 | 亚洲va中文字幕无码久久不卡 | 中文字幕av无码一区二区三区电影 | 亚洲中文字幕无码中文字在线 | 高潮毛片无遮挡高清免费视频 | 国内揄拍国内精品人妻 | 无套内谢的新婚少妇国语播放 | 麻豆果冻传媒2021精品传媒一区下载 | 人妻有码中文字幕在线 | 免费看少妇作爱视频 | 在线播放免费人成毛片乱码 | 日韩欧美中文字幕在线三区 | 人妻体内射精一区二区三四 | 精品国精品国产自在久国产87 | 国产精品高潮呻吟av久久 | 激情综合激情五月俺也去 | 国产精品福利视频导航 | 国产激情无码一区二区app | 亚洲日本va午夜在线电影 | 一区二区三区乱码在线 | 欧洲 | 两性色午夜视频免费播放 | 男女下面进入的视频免费午夜 | 亚洲精品一区二区三区在线 | 国产农村妇女高潮大叫 | 性欧美牲交xxxxx视频 | 中文字幕乱码人妻二区三区 | 国产精品亚洲一区二区三区喷水 | 日本精品人妻无码77777 天堂一区人妻无码 | 国产精品亚洲综合色区韩国 | 一本精品99久久精品77 | 国産精品久久久久久久 | 久久99精品国产麻豆 | 免费观看的无遮挡av | 久久婷婷五月综合色国产香蕉 | 97久久国产亚洲精品超碰热 | 精品亚洲韩国一区二区三区 | 亚洲区小说区激情区图片区 | 成人一在线视频日韩国产 | 伊人久久婷婷五月综合97色 | 国产亚洲人成在线播放 | 国产亚洲人成a在线v网站 | 偷窥日本少妇撒尿chinese | 欧美性生交xxxxx久久久 | 人妻人人添人妻人人爱 | 免费国产成人高清在线观看网站 | 亚洲天堂2017无码 | 风流少妇按摩来高潮 | 国产精品久久久午夜夜伦鲁鲁 | 在线a亚洲视频播放在线观看 | aⅴ亚洲 日韩 色 图网站 播放 | 欧美一区二区三区视频在线观看 | av香港经典三级级 在线 | 高清国产亚洲精品自在久久 | 久久www免费人成人片 | 天海翼激烈高潮到腰振不止 | 国产精品亚洲а∨无码播放麻豆 | 午夜精品一区二区三区在线观看 | 精品国产av色一区二区深夜久久 | 性做久久久久久久免费看 | 欧美一区二区三区 | 日日摸夜夜摸狠狠摸婷婷 | 性色av无码免费一区二区三区 | 免费观看又污又黄的网站 | 日本精品久久久久中文字幕 | 亚洲精品国产精品乱码不卡 | 99久久婷婷国产综合精品青草免费 | 亚洲欧洲日本无在线码 | 少妇无码一区二区二三区 | 国产精品办公室沙发 | 日本熟妇乱子伦xxxx | 国产精品手机免费 | 久9re热视频这里只有精品 | 国产人妖乱国产精品人妖 | 欧美黑人性暴力猛交喷水 | 久久久久se色偷偷亚洲精品av | 久久天天躁狠狠躁夜夜免费观看 | 中文字幕精品av一区二区五区 | 少妇一晚三次一区二区三区 | 精品久久久无码中文字幕 | 男女性色大片免费网站 | 内射欧美老妇wbb | 久久99精品国产麻豆 | 中文字幕无线码 | 日韩亚洲欧美精品综合 | 精品无码av一区二区三区 | 中文字幕亚洲情99在线 | 亚洲成色在线综合网站 | 亚洲经典千人经典日产 | 国产精品亚洲lv粉色 | 骚片av蜜桃精品一区 | 久久久久99精品成人片 | 一区二区三区乱码在线 | 欧洲 | 中文字幕人成乱码熟女app | 免费看男女做好爽好硬视频 | 国产性生大片免费观看性 | aa片在线观看视频在线播放 | 精品成人av一区二区三区 | 国产午夜手机精彩视频 | 97久久精品无码一区二区 | 成人一在线视频日韩国产 | 7777奇米四色成人眼影 | 无码人妻精品一区二区三区不卡 | 无码国模国产在线观看 | 草草网站影院白丝内射 | 99久久久国产精品无码免费 | 国产熟妇另类久久久久 | 女人被爽到呻吟gif动态图视看 | 久久熟妇人妻午夜寂寞影院 | 天天躁日日躁狠狠躁免费麻豆 | 伊人久久大香线蕉午夜 | 大屁股大乳丰满人妻 | 两性色午夜免费视频 | 人妻插b视频一区二区三区 | 99久久亚洲精品无码毛片 | 欧美三级a做爰在线观看 | 国产香蕉尹人视频在线 | 欧美日韩一区二区三区自拍 | 欧美国产日韩亚洲中文 | 午夜精品一区二区三区在线观看 | 娇妻被黑人粗大高潮白浆 | 久久97精品久久久久久久不卡 | 久久99精品久久久久久 | 色综合久久久无码网中文 | 东京热一精品无码av | 奇米影视7777久久精品人人爽 | 亚洲国产综合无码一区 | 亚洲国产精品久久久久久 | 免费看少妇作爱视频 | 亚洲の无码国产の无码步美 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产网红无码精品视频 | 亚洲爆乳大丰满无码专区 | 无遮无挡爽爽免费视频 | 5858s亚洲色大成网站www | 大肉大捧一进一出好爽视频 | 高潮毛片无遮挡高清免费 | 午夜时刻免费入口 | 99久久久无码国产精品免费 | 国产超碰人人爽人人做人人添 | 亚洲国产精品一区二区第一页 | 久久综合香蕉国产蜜臀av | 特黄特色大片免费播放器图片 | 日韩精品乱码av一区二区 | 久久久婷婷五月亚洲97号色 | 人妻中文无码久热丝袜 | 中文字幕日产无线码一区 | 成熟女人特级毛片www免费 | 亚洲国精产品一二二线 | 奇米影视888欧美在线观看 | 久久久亚洲欧洲日产国码αv | 99精品视频在线观看免费 | 永久免费观看美女裸体的网站 | 国产精品爱久久久久久久 | 亚洲欧洲日本无在线码 | 精品一区二区不卡无码av | 亚洲一区av无码专区在线观看 | 精品无码av一区二区三区 | 丝袜人妻一区二区三区 | 理论片87福利理论电影 | 国色天香社区在线视频 | 99久久精品无码一区二区毛片 | 欧洲vodafone精品性 | 成在人线av无码免费 | 亚洲va欧美va天堂v国产综合 | 亚洲熟女一区二区三区 | 在线看片无码永久免费视频 | 强辱丰满人妻hd中文字幕 |