关于神经网络分类特征平移不变性的实验
用分類映射的方法分類兩條直線y=n和y=x*tanθ+n-n* tanθ,兩條直線的交點(diǎn)是(n,n)
設(shè)r為0到1之間的隨機(jī)數(shù),兩個(gè)訓(xùn)練集為
A:[r+n][(r+n)*tanθ+n-n*tanθ]
B:[r+n][n]
訓(xùn)練集有5000個(gè),測(cè)試集初始化方式相同,有1000個(gè)。
網(wǎng)絡(luò)結(jié)構(gòu)為
(A,B)—2*2*2—(1,0)(0,1)(有java代碼)
?
讓n=0,0.1,0.2---3.75共28個(gè)值收斂了28*16*199次,觀察網(wǎng)絡(luò)的分辨準(zhǔn)確率和迭代次數(shù)是如何隨著n的變化而變化的。
迭代次數(shù)數(shù)據(jù)
| ? | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2 | 2.25 | 2.5 | 2.75 | 3 | 3.25 | 3.5 | 3.75 |
| δ | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) | 迭代次數(shù) |
| 0.5 | 162.8894 | 164.5126 | 173.7337 | 198.1256 | 151.4171 | 184.6332 | 197.0603 | 184.8844 | 193.2663 | 175.4673 | 172.1256 | 175.7588 | 191.0553 | 161.809 | 185.3668 | 185.2915 | 186.8392 | 180.6332 | 212.7035 | 158.3216 | 174.5226 | 162.8744 | 164.0101 | 161.9196 | 193.392 | 163.4673 | 216.6683 | 190.3216 |
| 0.4 | 6704.146 | 6490.226 | 6637.407 | 6727.462 | 6666.809 | 6844.698 | 6890.98 | 6392.296 | 6630.437 | 6781.975 | 6724.075 | 6616.377 | 6766.497 | 7085.342 | 6754.156 | 6720.367 | 6939.161 | 6785.312 | 7147.201 | 6915.965 | 6956.347 | 6895.995 | 7057.633 | 7232.457 | 7232.839 | 7136.367 | 7247 | 7292.357 |
| 0.3 | 7304.402 | 7001.166 | 7157.362 | 7156.93 | 7105.06 | 7459.372 | 7378.92 | 7158.045 | 7264.367 | 7366.598 | 7364.347 | 7562.859 | 7572.146 | 7742.256 | 7471.291 | 7671.844 | 7575.231 | 7815.322 | 8015.533 | 7648.286 | 8000.166 | 7636.608 | 7947.472 | 8032.357 | 8395.513 | 8250.397 | 7990.447 | 8218.568 |
| 0.2 | 7750.874 | 7688.97 | 7370.518 | 7612.598 | 7611.251 | 7923.603 | 7961.864 | 7657.07 | 7935.432 | 8124.327 | 8062.548 | 7867.101 | 8206.246 | 8153.925 | 8253.754 | 8416.206 | 8411.191 | 8543.322 | 8621.211 | 8253.462 | 8485.382 | 8432.497 | 8614.719 | 8880.698 | 9131.281 | 8943.894 | 8946.136 | 9060.166 |
| 0.1 | 8472.106 | 8269.894 | 8233.03 | 8181.714 | 8494.276 | 8572.849 | 8661.09 | 8662.186 | 8944.789 | 8864.166 | 8999.623 | 9102.93 | 9174.759 | 9436.246 | 9369.492 | 9359 | 9500.759 | 9490.005 | 9876.015 | 9440.065 | 10039.34 | 9581.281 | 10087.47 | 10232.95 | 10197.8 | 9932.055 | 9785.603 | 10498.63 |
| 0.01 | 11047.28 | 10357.41 | 10170.2 | 10556.95 | 10806.76 | 11853.69 | 12115.44 | 12264.74 | 12383.84 | 13008.01 | 13273.24 | 13742.86 | 13567.55 | 14700.41 | 15082.85 | 14469.93 | 15302.01 | 14963.52 | 15488.99 | 15585.62 | 15674.84 | 16024.77 | 17250.85 | 17635.41 | 17885.5 | 18331.95 | 19037.56 | 20527.45 |
| 0.001 | 15949.57 | 13360.87 | 13337.84 | 14327.5 | 15936.8 | 17060.02 | 18192.05 | 19825.59 | 19596.83 | 20945.23 | 21276.32 | 21661.59 | 21949.58 | 24102.88 | 24715.26 | 23972.36 | 25780.18 | 25750.23 | 25414.93 | 26795.01 | 26204.04 | 28462.87 | 31650.29 | 32803 | 37622.27 | 43100.07 | 47126.66 | 57652.27 |
| 9.00E-04 | 16385.22 | 13499.85 | 13523.93 | 14469.42 | 16208.01 | 17673.69 | 18811 | 20234.31 | 20429.3 | 21318.24 | 22062.96 | 22064.83 | 22265.53 | 24699.91 | 25443.71 | 24799.55 | 26532.65 | 26398.36 | 26273.75 | 27044.83 | 27157.91 | 29405.29 | 32223.79 | 35087.71 | 38718.29 | 45488.8 | 50564.61 | 62426.83 |
| 8.00E-04 | 16601.06 | 13576.7 | 13715.1 | 14830.07 | 16641.85 | 18125.7 | 19234.12 | 20670.59 | 21194.7 | 21667.38 | 23042.04 | 23027.08 | 22527.95 | 25541.54 | 25938.52 | 25060.44 | 27449.43 | 26978.64 | 27324.3 | 27376.21 | 27996.3 | 30659.38 | 32953.21 | 37565.75 | 39376.84 | 48518.29 | 53240.52 | 65967.03 |
| 7.00E-04 | 17169.87 | 13883.84 | 13797.62 | 14899.34 | 17045.29 | 18856.1 | 19680.52 | 22193.4 | 21753.6 | 22407.31 | 23864.82 | 24536.36 | 23337.46 | 26046.39 | 26326.63 | 25560.93 | 27915.89 | 27531.1 | 28906.37 | 28171.08 | 29449.63 | 31405.35 | 35119.82 | 39227.15 | 41040.77 | 51903.32 | 56343.2 | 70393.14 |
| 6.00E-04 | 17630.13 | 14085.33 | 14188.31 | 15252.83 | 17450.99 | 19841.57 | 20499.53 | 23464.46 | 22198.68 | 23100.08 | 24294.18 | 26045.34 | 24460.28 | 26721.26 | 27214.22 | 26123.77 | 28717.94 | 28185.94 | 30359.12 | 29353.96 | 31017.12 | 33431.16 | 37184.17 | 41485.41 | 44786.97 | 55527.96 | 61752.95 | 75898.69 |
| 5.00E-04 | 18631.19 | 14388.16 | 14477.67 | 15726.37 | 17931.69 | 21092.81 | 22039.63 | 23668.38 | 23273.93 | 23881.55 | 24841.09 | 26595.17 | 26450.83 | 27433.14 | 28729.05 | 27917.58 | 30113.31 | 29585.7 | 31671.36 | 31237.32 | 32934.65 | 34993.06 | 39004.11 | 42952.99 | 48441.56 | 60128.41 | 67817.84 | 86082.6 |
| 4.00E-04 | 19211.79 | 15077.17 | 14814.17 | 16235.16 | 18329.16 | 22687.1 | 24020.57 | 24152.28 | 24492.99 | 25529.53 | 26503.18 | 27330.49 | 29037.46 | 28277.25 | 30392.92 | 29703.87 | 31772.11 | 31210.92 | 32733.55 | 33470.89 | 35026.24 | 36856.95 | 42045.15 | 48070.57 | 52605.37 | 68022.45 | 76196.3 | 100852.2 |
| 3.00E-04 | 20484.61 | 15611.52 | 15433.74 | 17325.13 | 19516.9 | 26777.29 | 24841.73 | 25445.11 | 26230.2 | 30014.73 | 28002.16 | 29787.73 | 30969.93 | 30879.2 | 32052.68 | 32102.71 | 33974.42 | 34156.33 | 34362.58 | 36398.18 | 36508.85 | 40252.59 | 46247.39 | 52562.23 | 59314.3 | 78189.45 | 89947.53 | 125496.4 |
| 2.00E-04 | 22011.69 | 16338.01 | 16139.57 | 18703.34 | 21618.41 | 41873.07 | 27040.85 | 32110.6 | 29440.69 | 31735.22 | 30168.13 | 30484.64 | 31615.09 | 34439.91 | 35552.24 | 34938.9 | 37857.3 | 37220.8 | 38770.76 | 38741.2 | 41366.44 | 45719.87 | 52403.1 | 61832.09 | 70750.4 | 93253.14 | 110715.5 | 174654.9 |
| 1.00E-04 | 25422.17 | 17953.08 | 17744.19 | 21308.99 | 29550.53 | 52630.72 | 55579.81 | 61412.06 | 63599.88 | 60190.26 | 37802.84 | 38143.55 | 40581.46 | 38721.73 | 41285.62 | 40976.03 | 43785.39 | 45300.44 | 44978.88 | 47526.23 | 50649.24 | 57475.61 | 67941.38 | 81746.42 | 97458.47 | 137821 | 175270.3 | 283332.6 |
?
將迭代次數(shù)曲線畫出來(lái)
隨著n的增加迭代次數(shù)變大。
但在0<n<1區(qū)間內(nèi)明顯的有一個(gè)精細(xì)結(jié)構(gòu)。如果將迭代次數(shù)理解成兩個(gè)分類對(duì)象相似性的量度,至少對(duì)這個(gè)實(shí)驗(yàn)來(lái)說(shuō)神經(jīng)網(wǎng)絡(luò)的分類特征并沒有平移不變性,因?yàn)轱@然隨著交點(diǎn)的移動(dòng)兩條線在夾角不變的情況下,迭代次數(shù)是變化的。
?
再觀察分類準(zhǔn)確率
| ? | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2 | 2.25 | 2.5 | 2.75 | 3 | 3.25 | 3.5 | 3.75 |
| δ | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave | 平均準(zhǔn)確率p-ave |
| 0.5 | 0.5 | 0.500168 | 0.501088 | 0.503161 | 0.5 | 0.5 | 0.500045 | 0.500518 | 0.502467 | 0.501231 | 0.500475 | 0.500201 | 0.500515 | 0.500681 | 0.501731 | 0.500116 | 0.50051 | 0.502304 | 0.501513 | 0.5 | 0.5 | 0.500515 | 0.501116 | 0.499452 | 0.5 | 0.501327 | 0.50058 | 0.49998 |
| 0.4 | 0.957869 | 0.977578 | 0.97105 | 0.90903 | 0.894774 | 0.90857 | 0.875766 | 0.877445 | 0.805384 | 0.762892 | 0.702799 | 0.705457 | 0.680593 | 0.652741 | 0.640955 | 0.644138 | 0.605332 | 0.605302 | 0.589528 | 0.586397 | 0.570553 | 0.578211 | 0.540676 | 0.537329 | 0.517352 | 0.50748 | 0.502638 | 0.500362 |
| 0.3 | 0.971862 | 0.970947 | 0.929477 | 0.883749 | 0.863563 | 0.882053 | 0.855505 | 0.852641 | 0.779399 | 0.745588 | 0.703852 | 0.701636 | 0.686553 | 0.654799 | 0.653935 | 0.646427 | 0.617766 | 0.613528 | 0.606055 | 0.606093 | 0.589357 | 0.593688 | 0.554809 | 0.558967 | 0.532472 | 0.53649 | 0.514462 | 0.506146 |
| 0.2 | 0.979193 | 0.95744 | 0.911907 | 0.874852 | 0.850244 | 0.87049 | 0.847236 | 0.838807 | 0.766857 | 0.740912 | 0.695636 | 0.704965 | 0.697485 | 0.659724 | 0.656048 | 0.650952 | 0.623116 | 0.617668 | 0.610575 | 0.609475 | 0.600492 | 0.59854 | 0.563857 | 0.571884 | 0.548038 | 0.559166 | 0.530445 | 0.524211 |
| 0.1 | 0.982327 | 0.947603 | 0.905553 | 0.875038 | 0.846186 | 0.869992 | 0.845495 | 0.831565 | 0.765972 | 0.748377 | 0.701344 | 0.708613 | 0.700545 | 0.668085 | 0.66305 | 0.650289 | 0.632068 | 0.621859 | 0.62059 | 0.612055 | 0.608332 | 0.60203 | 0.567736 | 0.576804 | 0.555261 | 0.567857 | 0.534442 | 0.536394 |
| 0.01 | 0.988756 | 0.952832 | 0.91201 | 0.891525 | 0.870299 | 0.879344 | 0.850583 | 0.826445 | 0.751681 | 0.728264 | 0.701734 | 0.706425 | 0.679043 | 0.67695 | 0.667736 | 0.653842 | 0.654736 | 0.629834 | 0.632 | 0.645771 | 0.611487 | 0.607435 | 0.612827 | 0.619899 | 0.570138 | 0.601211 | 0.574626 | 0.597598 |
| 0.001 | 0.996405 | 0.964633 | 0.932636 | 0.906053 | 0.8835 | 0.899764 | 0.865658 | 0.844407 | 0.745668 | 0.741776 | 0.686271 | 0.663558 | 0.688392 | 0.669399 | 0.673802 | 0.662962 | 0.677317 | 0.657183 | 0.637181 | 0.644671 | 0.612857 | 0.63753 | 0.651198 | 0.627198 | 0.625786 | 0.609553 | 0.630442 | 0.623148 |
| 9.00E-04 | 0.996824 | 0.964917 | 0.934178 | 0.907068 | 0.885435 | 0.899344 | 0.869289 | 0.844736 | 0.74995 | 0.733319 | 0.677359 | 0.671236 | 0.688397 | 0.670967 | 0.667729 | 0.664513 | 0.67948 | 0.665751 | 0.647467 | 0.643588 | 0.616623 | 0.64355 | 0.653437 | 0.638618 | 0.616397 | 0.632156 | 0.616141 | 0.653997 |
| 8.00E-04 | 0.997048 | 0.965945 | 0.934329 | 0.907698 | 0.88648 | 0.899357 | 0.866264 | 0.845678 | 0.751236 | 0.726769 | 0.674475 | 0.689661 | 0.674791 | 0.664877 | 0.664764 | 0.65645 | 0.675447 | 0.669296 | 0.659864 | 0.648704 | 0.619827 | 0.65098 | 0.650967 | 0.648367 | 0.583264 | 0.632573 | 0.629704 | 0.657317 |
| 7.00E-04 | 0.99704 | 0.96648 | 0.934844 | 0.909035 | 0.887626 | 0.899289 | 0.868028 | 0.837136 | 0.75157 | 0.71643 | 0.660467 | 0.704183 | 0.676897 | 0.656266 | 0.665842 | 0.648575 | 0.67041 | 0.664234 | 0.677075 | 0.656013 | 0.634209 | 0.65002 | 0.647812 | 0.650299 | 0.585691 | 0.629558 | 0.636736 | 0.651603 |
| 6.00E-04 | 0.996932 | 0.967181 | 0.935857 | 0.909925 | 0.888209 | 0.900008 | 0.866352 | 0.797761 | 0.751291 | 0.711008 | 0.642073 | 0.70999 | 0.686857 | 0.642362 | 0.670942 | 0.634975 | 0.672726 | 0.662917 | 0.686161 | 0.661035 | 0.64356 | 0.643028 | 0.648354 | 0.643435 | 0.619736 | 0.642437 | 0.639352 | 0.669822 |
| 5.00E-04 | 0.996126 | 0.967651 | 0.937043 | 0.911432 | 0.890095 | 0.90355 | 0.853683 | 0.791015 | 0.75393 | 0.716387 | 0.645565 | 0.685917 | 0.711445 | 0.637666 | 0.682631 | 0.65753 | 0.675312 | 0.665153 | 0.681186 | 0.671309 | 0.651648 | 0.637364 | 0.655839 | 0.641198 | 0.628485 | 0.63905 | 0.661015 | 0.676178 |
| 4.00E-04 | 0.995583 | 0.968357 | 0.938407 | 0.911842 | 0.892201 | 0.906319 | 0.823583 | 0.763857 | 0.755709 | 0.729048 | 0.657246 | 0.674035 | 0.726543 | 0.653108 | 0.700279 | 0.679008 | 0.671118 | 0.662771 | 0.644756 | 0.674078 | 0.633399 | 0.644289 | 0.666319 | 0.655201 | 0.613146 | 0.645874 | 0.673776 | 0.680877 |
| 3.00E-04 | 0.995128 | 0.968734 | 0.939907 | 0.913837 | 0.894005 | 0.927018 | 0.877756 | 0.713412 | 0.741427 | 0.747173 | 0.66607 | 0.63645 | 0.702221 | 0.671319 | 0.689377 | 0.677945 | 0.666106 | 0.664033 | 0.643045 | 0.658608 | 0.634779 | 0.660864 | 0.660284 | 0.652264 | 0.626405 | 0.658291 | 0.688226 | 0.686947 |
| 2.00E-04 | 0.995739 | 0.969513 | 0.942269 | 0.918008 | 0.905364 | 0.952254 | 0.849525 | 0.696739 | 0.744857 | 0.726035 | 0.667138 | 0.636917 | 0.696892 | 0.674111 | 0.672764 | 0.673736 | 0.677528 | 0.674673 | 0.67347 | 0.662181 | 0.643133 | 0.65544 | 0.671563 | 0.65405 | 0.628261 | 0.669284 | 0.675073 | 0.690221 |
| 1.00E-04 | 0.996427 | 0.971389 | 0.944603 | 0.919837 | 0.911176 | 0.964452 | 0.952053 | 0.909025 | 0.764367 | 0.71694 | 0.662932 | 0.654244 | 0.704907 | 0.658744 | 0.699683 | 0.689033 | 0.669729 | 0.686043 | 0.65209 | 0.670425 | 0.64908 | 0.665603 | 0.684518 | 0.667935 | 0.67653 | 0.691078 | 0.694033 | 0.683332 |
分類準(zhǔn)確率隨著n的增加不斷的下降,這個(gè)現(xiàn)象也表明了平移對(duì)分類是有影響的。
?因此這個(gè)實(shí)驗(yàn)表明神經(jīng)網(wǎng)絡(luò)的被分類特征并沒有在二維平面內(nèi)的平移不變性,分類特征對(duì)坐標(biāo)的選擇是高度敏感的。標(biāo)尺的選擇對(duì)分類效果有非常大的影響。這里所謂的標(biāo)尺就是一種數(shù)值的大小比例,將數(shù)值理解成是二維空間的密度,這個(gè)結(jié)論就等價(jià)于表明空間的形狀對(duì)分類有影響。
?
《新程序員》:云原生和全面數(shù)字化實(shí)踐50位技術(shù)專家共同創(chuàng)作,文字、視頻、音頻交互閱讀總結(jié)
以上是生活随笔為你收集整理的关于神经网络分类特征平移不变性的实验的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 15岁骨骺线闭合还能长高吗?广州穗雅治疗
- 下一篇: 电子到底为什么会干涉?