估算神经网络卷积核数量的近似方法
?
作一個5分類網(wǎng)絡分類mnist的0,1,2,3,4.用3*3的卷積核,卷積核數(shù)量從1個到36個,收斂標準為1e-4,每個網(wǎng)絡收斂199次,共收斂了36*199次。比較平均分類準確率,來判斷這個網(wǎng)絡到底應該用多少個卷積核。
?
實驗得到的數(shù)據(jù)
| con | f2[0] | f2[1] | f2[2] | f2[3] | f2[4] | 迭代次數(shù)n | 平均準確率p-ave | δ | 耗時ms/次 | 耗時ms/199次 | 耗時 min/199 | 最大值p-max | 平均值標準差 |
| 1 | 0.3969992 | 3.98E-05 | 0.0503128 | 0.4673393 | 0.0854662 | 104470.93 | 0.9590255 | 1.00E-04 | 7423.3367 | 1477250 | 24.620833 | 0.9680872 | 0.0043556 |
| 2 | 0.5326588 | 4.04E-05 | 0.0603636 | 0.371877 | 0.0352327 | 91750.819 | 0.9702316 | 1.00E-04 | 12125.719 | 2413018 | 40.216967 | 0.9780113 | 0.0035651 |
| 3 | 0.6381764 | 0.0100856 | 0.0452943 | 0.2713923 | 0.035238 | 86584.065 | 0.9738819 | 1.00E-04 | 16815.226 | 3346247 | 55.770783 | 0.9820977 | 0.0040536 |
| 4 | 0.6381738 | 4.73E-05 | 0.1106123 | 0.2211455 | 0.0302111 | 86691.578 | 0.9767782 | 1.00E-04 | 22660.191 | 4509378 | 75.1563 | 0.9832652 | 0.0037532 |
| 5 | 0.6331478 | 0.0100947 | 0.075442 | 0.2512897 | 0.0302126 | 86251.307 | 0.9778187 | 1.00E-04 | 28140.724 | 5600006 | 93.333433 | 0.9844328 | 0.0038567 |
| 6 | 0.663292 | 0.0201439 | 0.0804656 | 0.2110933 | 0.0251883 | 87147.04 | 0.9782626 | 1.00E-04 | 34999.673 | 6964940 | 116.08233 | 0.9856003 | 0.0049456 |
| 7 | 0.6431916 | 0.0352167 | 0.1055901 | 0.1809471 | 0.0352373 | 88852.809 | 0.979523 | 1.00E-04 | 40875.286 | 8134201 | 135.57002 | 0.9875462 | 0.0036779 |
| 8 | 0.5929492 | 0.030195 | 0.1357355 | 0.2211434 | 0.0201619 | 89753.98 | 0.9798262 | 1.00E-04 | 47459.693 | 9444484 | 157.40807 | 0.9873516 | 0.0041034 |
| 9 | 0.7034819 | 0.0301944 | 0.0854927 | 0.1608519 | 0.0201675 | 87998.749 | 0.9798575 | 1.00E-04 | 54462.874 | 10838112 | 180.6352 | 0.9867679 | 0.0034211 |
| 10 | 0.6130412 | 0.0603421 | 0.1457836 | 0.1759217 | 0.0050887 | 89349.714 | 0.9803728 | 1.00E-04 | 59108.151 | 11762539 | 196.04232 | 0.9857949 | 0.0035238 |
| 11 | 0.5879192 | 0.0402465 | 0.1407561 | 0.2060706 | 0.0251908 | 90482.065 | 0.9803962 | 1.00E-04 | 67296.894 | 13392090 | 223.2015 | 0.9865733 | 0.0038802 |
| 12 | 0.6331418 | 0.0502906 | 0.0955387 | 0.2161208 | 0.0050907 | 89244.975 | 0.9797597 | 1.00E-04 | 70763.487 | 14081940 | 234.699 | 0.9875462 | 0.0044283 |
| 13 | 0.592942 | 0.0955135 | 0.1508071 | 0.1407538 | 0.020162 | 89329.613 | 0.9808901 | 1.00E-04 | 75231.442 | 14971057 | 249.51762 | 0.9869624 | 0.0033256 |
| 14 | 0.6230928 | 0.0804369 | 0.0854918 | 0.1909943 | 0.0201645 | 90552.005 | 0.9797753 | 1.00E-04 | 84153.206 | 16746520 | 279.10867 | 0.987157 | 0.0045751 |
| 15 | 0.5929442 | 0.0754167 | 0.1156359 | 0.1909996 | 0.0251897 | 93018.387 | 0.9802105 | 1.00E-04 | 91327.648 | 18174212 | 302.90353 | 0.9865733 | 0.0039654 |
| 16 | 0.5627995 | 0.0904876 | 0.1658809 | 0.1558236 | 0.0251893 | 92548.422 | 0.9797861 | 1.00E-04 | 94837.101 | 18872624 | 314.54373 | 0.9867679 | 0.0057113 |
| 17 | 0.5376756 | 0.1005396 | 0.1307096 | 0.1909953 | 0.0402658 | 94034.508 | 0.9804715 | 1.00E-04 | 102810.7 | 20459334 | 340.9889 | 0.98813 | 0.0039014 |
| 18 | 0.5226047 | 0.1055641 | 0.16588 | 0.1759218 | 0.0302125 | 93370.829 | 0.9794135 | 1.00E-04 | 108527.4 | 21596970 | 359.9495 | 0.9865733 | 0.0057292 |
| 19 | 0.4773845 | 0.1055662 | 0.1457795 | 0.2311939 | 0.040265 | 92563.859 | 0.9798262 | 1.00E-04 | 114088.12 | 22703535 | 378.39225 | 0.9865733 | 0.004553 |
| 20 | 0.5376743 | 0.1156157 | 0.1106088 | 0.1909971 | 0.0452859 | 93299.754 | 0.9796404 | 1.00E-04 | 121038.73 | 24086713 | 401.44522 | 0.987157 | 0.0045705 |
| 21 | 0.5226023 | 0.1206402 | 0.1357329 | 0.1960206 | 0.0251851 | 97356.729 | 0.9799376 | 1.00E-04 | 134315.59 | 26728803 | 445.48005 | 0.9867679 | 0.004487 |
| 22 | 0.5075321 | 0.1005449 | 0.1206582 | 0.2261668 | 0.045284 | 96326.749 | 0.9803376 | 1.00E-04 | 137166.5 | 27296139 | 454.93565 | 0.9869624 | 0.0044399 |
| 23 | 0.5025043 | 0.1507855 | 0.115633 | 0.1909954 | 0.0402654 | 97184.352 | 0.9800403 | 1.00E-04 | 145956.26 | 29045295 | 484.08825 | 0.9865733 | 0.0036915 |
| 24 | 0.4824062 | 0.1357126 | 0.1658767 | 0.2010443 | 0.015138 | 99128.06 | 0.9799279 | 1.00E-04 | 153790.74 | 30604360 | 510.07267 | 0.9867679 | 0.0040233 |
| 25 | 0.5276279 | 0.1507869 | 0.1156348 | 0.165873 | 0.040264 | 100264.15 | 0.9801645 | 1.00E-04 | 161833.56 | 32204878 | 536.74797 | 0.9869624 | 0.0039724 |
| 26 | 0.4924545 | 0.1206439 | 0.1457783 | 0.196021 | 0.0452845 | 99471.93 | 0.9799572 | 1.00E-04 | 168385.3 | 33508709 | 558.47848 | 0.9875462 | 0.0041268 |
| 27 | 0.4874312 | 0.1407408 | 0.1608527 | 0.1859737 | 0.0251922 | 102755.69 | 0.9799474 | 1.00E-04 | 178808.95 | 35582981 | 593.04968 | 0.9867679 | 0.0041321 |
| 28 | 0.4623089 | 0.1759113 | 0.1457781 | 0.1759214 | 0.0402655 | 100270.1 | 0.97939 | 1.00E-04 | 187493.72 | 37311250 | 621.85417 | 0.9859895 | 0.0049753 |
| 29 | 0.4723593 | 0.165862 | 0.1457793 | 0.1708976 | 0.0452927 | 104338.68 | 0.9799953 | 1.00E-04 | 197608.21 | 39324034 | 655.40057 | 0.9861841 | 0.0038264 |
| 30 | 0.4321601 | 0.1658635 | 0.1709047 | 0.1909934 | 0.040261 | 103310.58 | 0.979434 | 1.00E-04 | 201993.4 | 40196709 | 669.94515 | 0.987157 | 0.0040633 |
| 31 | 0.4673351 | 0.155815 | 0.1457778 | 0.1658707 | 0.0653866 | 102941.5 | 0.9791524 | 1.00E-04 | 208387.09 | 41469030 | 691.1505 | 0.9877408 | 0.0045501 |
| 32 | 0.517581 | 0.1105933 | 0.1055844 | 0.236215 | 0.0302168 | 101947.78 | 0.9791221 | 1.00E-04 | 213261.81 | 42439106 | 707.31843 | 0.9861841 | 0.0041763 |
| 33 | 0.4371863 | 0.1507924 | 0.1759286 | 0.1809449 | 0.0553372 | 107287.02 | 0.9798115 | 1.00E-04 | 231864.87 | 46141110 | 769.0185 | 0.9861841 | 0.0041173 |
| 34 | 0.4924578 | 0.1306948 | 0.1106064 | 0.2161159 | 0.0503128 | 107965.09 | 0.9797509 | 1.00E-04 | 236180.71 | 46999979 | 783.33298 | 0.9865733 | 0.0039793 |
| 35 | 0.5075315 | 0.1206431 | 0.1256796 | 0.150798 | 0.0955321 | 107841.65 | 0.9792522 | 1.00E-04 | 246869.31 | 41097532 | 684.95887 | 0.9859895 | 0.0047116 |
| 36 | 0.5125546 | 0.1457666 | 0.1307065 | 0.1608499 | 0.0503141 | 107752.64 | 0.9797509 | 1.00E-04 | 255624.7 | 50869316 | 847.82193 | 0.9867679 | 0.0042543 |
?
將pave畫成圖
網(wǎng)絡峰值性能出現(xiàn)在con=13,峰值性能為0.9808901.當con<13時隨著卷積核數(shù)量的增加網(wǎng)絡性能迅速增加,當con>13隨著卷積核數(shù)量的增加網(wǎng)絡性能持續(xù)的減弱。
?
這張圖是con=10到con=36的圖片,當con=36時平均性能只有峰值性能的99.88%,但是耗時確是峰值耗時3.39倍,也就是用了3.39倍的時間但性能卻下降了0.12%。
這個實驗再次清晰的表明了卷積核數(shù)量存在最優(yōu)值,卷積核數(shù)量超過最優(yōu)值以后,繼續(xù)增加卷積核會導致網(wǎng)絡性能下降。
?
再比較前面的實驗數(shù)據(jù),用3*3的卷積核二分類0和2的卷積核最優(yōu)值是4個,而10分類是最優(yōu)值是47個,這次實驗的5分類最優(yōu)值13個。
可以用這3組數(shù)據(jù)得到一個近似的估算卷積核數(shù)量最優(yōu)值的方法
Con=0.475*x**2-0.3250000000000002*x+2.7500000000000004
| con | ? | 分類數(shù)x |
| ? | ? | ? |
| 2 | ? | 4 |
| 3 | ? | 6.05 |
| 4 | ? | 9.05 |
| 5 | ? | 13 |
| 6 | ? | 17.9 |
| 7 | ? | 23.75 |
| 8 | ? | 30.55 |
| 9 | ? | 38.3 |
| 10 | ? | 47 |
用這個方法估算一個6分類網(wǎng)絡的卷積核數(shù)量的最優(yōu)值大約為18個。
?
?
總結
以上是生活随笔為你收集整理的估算神经网络卷积核数量的近似方法的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 用神经网络分类随机数与无理数
- 下一篇: 地暖机耗电量高不高?我看朋友家的挺暖的。