应用化学C4H12Si类四甲基硅结构的神经网络
用神經(jīng)網(wǎng)絡(luò)的反向傳導(dǎo)原理模擬振動制作一個網(wǎng)絡(luò),讓這個網(wǎng)絡(luò)的結(jié)構(gòu)與四甲基硅的結(jié)構(gòu)相同。網(wǎng)絡(luò)的收斂標準是單鍵兩端的輸出函數(shù)的差值的絕對值小于δ,
讓δ等于0.5到1e-6的34個值。每個δ收斂199次取平均值。網(wǎng)絡(luò)的輸入等于原子序數(shù)/30.網(wǎng)絡(luò)用一種只等值但并不耦合的方法運行,也就是共有17套獨立的網(wǎng)絡(luò)。
收集到的數(shù)據(jù)
| c0si | c0h2 | c0h1 | c0h0 | c1si | c1h5 | c1h4 | c1h3 | c2si | c2h6 | c2h7 | c2h8 | c3si | c3h9 | c3h10 | c3h11 | 迭代次數(shù) | δ | 耗時ms/次 | 耗時ms/199次 |
| 0.835655 | 0.838679 | 0.833371 | 0.832662 | 0.836242 | 0.83956 | 0.838843 | 0.833851 | 0.836194 | 0.839187 | 0.840844 | 0.836915 | 0.839616 | 0.837143 | 0.840839 | 0.839914 | 1 | 0.5 | 0.472362 | 110 |
| 0.841923 | 0.831103 | 0.830396 | 0.830275 | 0.839066 | 0.830209 | 0.825592 | 0.821593 | 0.84087 | 0.821726 | 0.827559 | 0.828609 | 0.842976 | 0.834711 | 0.829397 | 0.828059 | 1.507538 | 0.4 | 0.155779 | 31 |
| 0.86434 | 0.785728 | 0.793718 | 0.79038 | 0.858981 | 0.785458 | 0.787002 | 0.787494 | 0.861602 | 0.78268 | 0.787461 | 0.798358 | 0.858903 | 0.783886 | 0.790662 | 0.787949 | 14.73869 | 0.3 | 0.864322 | 172 |
| 0.876459 | 0.728286 | 0.735253 | 0.726365 | 0.880864 | 0.727327 | 0.726926 | 0.722291 | 0.87454 | 0.728521 | 0.730179 | 0.723856 | 0.881272 | 0.727568 | 0.731708 | 0.731611 | 35.40704 | 0.2 | 1.175879 | 234 |
| 0.895583 | 0.666444 | 0.671789 | 0.675441 | 0.894947 | 0.673145 | 0.672572 | 0.669025 | 0.891072 | 0.66724 | 0.66924 | 0.672854 | 0.894525 | 0.673381 | 0.670065 | 0.67138 | 67.65327 | 0.1 | 1.964824 | 391 |
| 0.902567 | 0.62086 | 0.618497 | 0.619798 | 0.905183 | 0.617007 | 0.623375 | 0.624577 | 0.904909 | 0.623275 | 0.62474 | 0.62143 | 0.906301 | 0.621181 | 0.623682 | 0.62301 | 166.6482 | 0.01 | 5.18593 | 1032 |
| 0.905731 | 0.613366 | 0.616569 | 0.623291 | 0.905163 | 0.617539 | 0.618944 | 0.619051 | 0.905055 | 0.616387 | 0.620007 | 0.619287 | 0.908122 | 0.616047 | 0.615409 | 0.617464 | 278.1457 | 0.001 | 8.095477 | 1611 |
| 0.908588 | 0.617192 | 0.616668 | 0.617116 | 0.908616 | 0.617793 | 0.616786 | 0.612506 | 0.906533 | 0.614031 | 0.610194 | 0.616682 | 0.906619 | 0.619116 | 0.622162 | 0.62095 | 286.7085 | 9.00E-04 | 8.100503 | 1627 |
| 0.909477 | 0.611791 | 0.620836 | 0.620368 | 0.908485 | 0.616047 | 0.615283 | 0.619479 | 0.909164 | 0.618382 | 0.61417 | 0.614048 | 0.908094 | 0.618118 | 0.619489 | 0.622579 | 294.9095 | 8.00E-04 | 8.095477 | 1626 |
| 0.90802 | 0.61865 | 0.617141 | 0.616228 | 0.908473 | 0.617303 | 0.614763 | 0.618868 | 0.907738 | 0.615106 | 0.616824 | 0.61991 | 0.906713 | 0.616671 | 0.615832 | 0.617261 | 301.3518 | 7.00E-04 | 8.165829 | 1625 |
| 0.905475 | 0.616084 | 0.619986 | 0.612752 | 0.909482 | 0.618228 | 0.617263 | 0.624813 | 0.906271 | 0.611089 | 0.614982 | 0.617299 | 0.905287 | 0.616584 | 0.61355 | 0.618221 | 306.6633 | 6.00E-04 | 8.281407 | 1648 |
| 0.904709 | 0.618546 | 0.615507 | 0.619756 | 0.908246 | 0.618596 | 0.617484 | 0.617053 | 0.907272 | 0.621116 | 0.61598 | 0.612838 | 0.909083 | 0.617553 | 0.619694 | 0.616952 | 314.6231 | 5.00E-04 | 8.798995 | 1751 |
| 0.908476 | 0.621508 | 0.618154 | 0.617717 | 0.907759 | 0.620372 | 0.619703 | 0.618956 | 0.906719 | 0.617847 | 0.616071 | 0.615885 | 0.908454 | 0.615038 | 0.615025 | 0.614204 | 326.7638 | 4.00E-04 | 8.643216 | 1720 |
| 0.904096 | 0.617583 | 0.618069 | 0.616114 | 0.908212 | 0.611906 | 0.616378 | 0.617533 | 0.908157 | 0.616504 | 0.616859 | 0.618559 | 0.907807 | 0.618246 | 0.617132 | 0.615607 | 345.0201 | 3.00E-04 | 9.19598 | 1830 |
| 0.906513 | 0.617191 | 0.62049 | 0.614578 | 0.905335 | 0.619494 | 0.617487 | 0.6178 | 0.905969 | 0.620606 | 0.613865 | 0.617216 | 0.903199 | 0.618624 | 0.618234 | 0.620438 | 363.7085 | 2.00E-04 | 9.592965 | 1909 |
| 0.909265 | 0.614903 | 0.61878 | 0.619813 | 0.90921 | 0.623267 | 0.624834 | 0.618033 | 0.907001 | 0.618409 | 0.620569 | 0.618886 | 0.909662 | 0.614834 | 0.621997 | 0.616784 | 404.1307 | 1.00E-04 | 10.76884 | 2143 |
| 0.901721 | 0.614867 | 0.620682 | 0.620847 | 0.904311 | 0.617585 | 0.616485 | 0.617527 | 0.904611 | 0.613601 | 0.617175 | 0.612657 | 0.904233 | 0.618918 | 0.614728 | 0.613725 | 400.3869 | 9.00E-05 | 10.53266 | 2096 |
| 0.90899 | 0.616149 | 0.613083 | 0.618597 | 0.903005 | 0.61718 | 0.619529 | 0.615484 | 0.910178 | 0.622098 | 0.618343 | 0.62168 | 0.90226 | 0.617338 | 0.617523 | 0.613987 | 405.8543 | 8.00E-05 | 10.68844 | 2127 |
| 0.90871 | 0.622477 | 0.615412 | 0.620735 | 0.903701 | 0.613465 | 0.615648 | 0.616796 | 0.903442 | 0.621284 | 0.623714 | 0.62084 | 0.906811 | 0.620842 | 0.616345 | 0.617244 | 413.3769 | 7.00E-05 | 10.92462 | 2174 |
| 0.903574 | 0.615482 | 0.618034 | 0.617704 | 0.910326 | 0.615384 | 0.618286 | 0.614485 | 0.903828 | 0.615298 | 0.619212 | 0.616509 | 0.903699 | 0.620582 | 0.616894 | 0.617331 | 421.0503 | 6.00E-05 | 11.08543 | 2206 |
| 0.907561 | 0.6169 | 0.617745 | 0.612548 | 0.90554 | 0.616732 | 0.619124 | 0.619146 | 0.90859 | 0.614705 | 0.618308 | 0.614524 | 0.902899 | 0.62004 | 0.616391 | 0.621631 | 437.1407 | 5.00E-05 | 11.62814 | 2314 |
| 0.91003 | 0.617163 | 0.620628 | 0.621542 | 0.902972 | 0.619588 | 0.612681 | 0.618229 | 0.906647 | 0.616026 | 0.619357 | 0.617082 | 0.902318 | 0.620143 | 0.616883 | 0.614879 | 447.7538 | 4.00E-05 | 11.78894 | 2346 |
| 0.909872 | 0.617208 | 0.615285 | 0.615381 | 0.904238 | 0.616982 | 0.618801 | 0.614718 | 0.904771 | 0.614818 | 0.622013 | 0.61881 | 0.908097 | 0.620084 | 0.623531 | 0.612679 | 461.8442 | 3.00E-05 | 12.18593 | 2425 |
| 0.907365 | 0.620364 | 0.618638 | 0.613494 | 0.905378 | 0.61932 | 0.614413 | 0.61729 | 0.907911 | 0.618506 | 0.615483 | 0.616188 | 0.906698 | 0.614113 | 0.61666 | 0.617185 | 476.8894 | 2.00E-05 | 12.57286 | 2502 |
| 0.904941 | 0.616181 | 0.617318 | 0.617411 | 0.911493 | 0.61697 | 0.618895 | 0.617409 | 0.905297 | 0.618531 | 0.619127 | 0.621738 | 0.905152 | 0.618263 | 0.612085 | 0.617707 | 513.1709 | 1.00E-05 | 13.51759 | 2690 |
| 0.907969 | 0.611784 | 0.619157 | 0.618516 | 0.907548 | 0.616996 | 0.62313 | 0.620573 | 0.907079 | 0.6157 | 0.616214 | 0.624612 | 0.90551 | 0.616419 | 0.618369 | 0.616148 | 525.3568 | 9.00E-06 | 13.83417 | 2769 |
| 0.906432 | 0.616523 | 0.619181 | 0.62278 | 0.909265 | 0.618434 | 0.614917 | 0.621058 | 0.908606 | 0.616944 | 0.624366 | 0.614498 | 0.908302 | 0.616486 | 0.616281 | 0.614327 | 539.9598 | 8.00E-06 | 14.1407 | 2814 |
| 0.909424 | 0.619663 | 0.615489 | 0.612704 | 0.907205 | 0.622941 | 0.621291 | 0.6165 | 0.903183 | 0.621769 | 0.617016 | 0.621189 | 0.90722 | 0.615302 | 0.617545 | 0.616658 | 539.7387 | 7.00E-06 | 14.69849 | 2925 |
| 0.907794 | 0.618838 | 0.621367 | 0.615282 | 0.907248 | 0.619055 | 0.617457 | 0.618953 | 0.909761 | 0.618293 | 0.620893 | 0.618192 | 0.907978 | 0.618057 | 0.617853 | 0.617021 | 545.9045 | 6.00E-06 | 14.38191 | 2862 |
| 0.907084 | 0.61792 | 0.615553 | 0.61934 | 0.909927 | 0.614286 | 0.622769 | 0.617058 | 0.909819 | 0.611709 | 0.6183 | 0.617866 | 0.908536 | 0.615493 | 0.618477 | 0.615896 | 558.3015 | 5.00E-06 | 14.8593 | 2957 |
| 0.906104 | 0.619957 | 0.614801 | 0.615464 | 0.907949 | 0.613981 | 0.618872 | 0.623357 | 0.904703 | 0.618123 | 0.618623 | 0.61463 | 0.907463 | 0.612226 | 0.612233 | 0.616482 | 564.3618 | 4.00E-06 | 14.85427 | 2972 |
| 0.907488 | 0.619772 | 0.619295 | 0.617351 | 0.906089 | 0.612728 | 0.615757 | 0.61834 | 0.903031 | 0.618863 | 0.623593 | 0.614841 | 0.902676 | 0.615056 | 0.616316 | 0.624118 | 573.6281 | 3.00E-06 | 15.24623 | 3034 |
| 0.909056 | 0.619789 | 0.615164 | 0.61776 | 0.908731 | 0.6197 | 0.61564 | 0.621011 | 0.904909 | 0.616781 | 0.617903 | 0.620109 | 0.907209 | 0.622057 | 0.616438 | 0.620346 | 611.3317 | 2.00E-06 | 16.19095 | 3222 |
| 0.906673 | 0.616523 | 0.617877 | 0.622168 | 0.909541 | 0.621985 | 0.612937 | 0.616358 | 0.905091 | 0.614499 | 0.616388 | 0.625131 | 0.907406 | 0.62483 | 0.615968 | 0.618341 | 629.3015 | 1.00E-06 | 16.9799 | 3394 |
| ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
| 0.907371 | 0.617498 | 0.617552 | 0.617865 | 0.907036 | 0.617715 | 0.617972 | 0.618017 | 0.906235 | 0.617156 | 0.619295 | 0.61842 | 0.906007 | 0.617952 | 0.616975 | 0.616973 | 498.3938 | 3.13E-05 | 13.20418 | 2630.105 |
?
統(tǒng)計相對穩(wěn)定的1e-4到1e-6的區(qū)間的數(shù)據(jù),
| ? | C-Si | C-H | C-H | C-H |
| C0 | 0.907371 | 0.617498 | 0.617552 | 0.617865 |
| C1 | 0.907036 | 0.617715 | 0.617972 | 0.618017 |
| C2 | 0.906235 | 0.617156 | 0.619295 | 0.61842 |
| C3 | 0.906007 | 0.617952 | 0.616975 | 0.616973 |
| ? | 0.906662 | 0.617782 | ? | ? |
可以明顯的觀察到只有C-Si鍵和C-H鍵兩種鍵值,其中C-Si鍵值約為0.90662,C-H鍵的鍵值約為0.617782。這個現(xiàn)象很好的體現(xiàn)了一種結(jié)構(gòu)上的對稱性。
?
總結(jié)
以上是生活随笔為你收集整理的应用化学C4H12Si类四甲基硅结构的神经网络的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 多层神经网络Java代码800行
- 下一篇: 信息素养四要素和信息素养的关系(信息素养