用神经网络学习Fe原子光谱并反向求导计算权重
首先構(gòu)造一個1*26*26的神經(jīng)網(wǎng)絡(luò)
根據(jù)鐵的發(fā)射光譜
| 強(qiáng)度 | * | 波長10^-10m | * | 歸一化 |
| 1000 | P | 2483.2708 | y0 | 0.566498 |
| 600 | P | 2488.1426 | y1 | 0.56761 |
| 500 | P | 2490.6443 | y2 | 0.56818 |
| 400 | P | 2522.8494 | y3 | 0.575527 |
| 400 | P | 2719.0273 | y4 | 0.62028 |
| 300 | P | 2788.1047 | y5 | 0.636039 |
| 400 | P | 3440.606 | y6 | 0.784891 |
| 600 | P | 3581.1931 | y7 | 0.816963 |
| 600 | P | 3719.9348 | y8 | 0.848613 |
| 700 | P | 3734.8638 | y9 | 0.852019 |
| 600 | P | 3737.1316 | y10 | 0.852536 |
| 600 | P | 3745.5613 | y11 | 0.854459 |
| 400 | P | 3749.4854 | y12 | 0.855355 |
| 300 | P | 3758.2329 | y13 | 0.85735 |
| 500 | P | 3820.4253 | y14 | 0.871538 |
| 500 | P | 3859.9114 | y15 | 0.880546 |
| 300 | P | 4045.8125 | y16 | 0.922955 |
| 200 | P | 4383.5449 | y17 | 1 |
讓x0=sigmoid(26),讓y0的目標(biāo)函數(shù)等于0.566498( 2483.2708 / 4383.5449),并依次讓y17的目標(biāo)函數(shù)等于1. y18-y25=0,讓學(xué)習(xí)率等于0.1,采用隨機(jī)梯度下降法迭代。
這個網(wǎng)絡(luò)是可以收斂的比如其中的一組數(shù)據(jù)
| 輸出 | * | 目標(biāo)函數(shù) | 迭代次數(shù) | 換算輸出 | 真實(shí)值 | * | 誤差 |
| 0.565266 | 0 | 0.566498315 | 339764 | 2477.867 | 2483.271 | y0 | 0.002176 |
| 0.567686 | 1 | 0.567609699 | 339764 | 2488.478 | 2488.143 | y1 | 0.000135 |
| 0.568894 | 2 | 0.568180401 | 339764 | 2493.772 | 2490.644 | y2 | 0.001256 |
| 0.57364 | 3 | 0.575527218 | 339764 | 2514.577 | 2522.849 | y3 | 0.003279 |
| 0.61905 | 4 | 0.620280472 | 339764 | 2713.635 | 2719.027 | y4 | 0.001983 |
| 0.636826 | 5 | 0.636038814 | 339764 | 2791.556 | 2788.105 | y5 | 0.001238 |
| 0.786496 | 6 | 0.784891242 | 339764 | 3447.643 | 3440.606 | y6 | 0.002045 |
| 0.817404 | 7 | 0.816962796 | 339764 | 3583.126 | 3581.193 | y7 | 0.00054 |
| 0.850477 | 8 | 0.848613368 | 339764 | 3728.104 | 3719.935 | y8 | 0.002196 |
| 0.852941 | 9 | 0.852019059 | 339764 | 3738.904 | 3734.864 | y9 | 0.001082 |
| 0.852904 | 10 | 0.852536403 | 339764 | 3738.743 | 3737.132 | y10 | 0.000431 |
| 0.855403 | 11 | 0.854459435 | 339764 | 3749.696 | 3745.561 | y11 | 0.001104 |
| 0.856492 | 12 | 0.855354624 | 339764 | 3754.471 | 3749.485 | y12 | 0.00133 |
| 0.857735 | 13 | 0.857350155 | 339764 | 3759.921 | 3758.233 | y13 | 0.000449 |
| 0.873373 | 14 | 0.871537851 | 339764 | 3828.469 | 3820.425 | y14 | 0.002106 |
| 0.882092 | 15 | 0.880545652 | 339764 | 3866.688 | 3859.911 | y15 | 0.001756 |
| 0.924514 | 16 | 0.922954502 | 339764 | 4052.649 | 4045.813 | y16 | 0.00169 |
| 0.999991 | 17 | 1 | 339764 | 4383.504 | 4383.545 | y17 | 9.26E-06 |
在網(wǎng)絡(luò)迭代了339764次以后得到這組數(shù)據(jù),y0-y17的輸出值與目標(biāo)函數(shù)的誤差最大小于0.4%,誤差平均0.14%。比如第一組數(shù)據(jù)目標(biāo)函數(shù)是0.566498315,網(wǎng)絡(luò)輸出是0.565266,將這兩個值都*4383.545,得到輸出值2477.867,真實(shí)測量的值是2483.271,誤差是0.2176%。
并且可以很容易的導(dǎo)出當(dāng)網(wǎng)絡(luò)收斂時的權(quán)重值。按照平方映射的原理,神經(jīng)網(wǎng)絡(luò)的權(quán)重與輸出是一一對應(yīng)的關(guān)系,也就是對一個輸出與其對應(yīng)的權(quán)重的解是唯一的。
也就是說函數(shù)
f(26,w1,w2)=[y0,y17]
的解數(shù)組w1,w2是唯一的。
W1[1*26]第一層權(quán)重
W2[26*26]第二層權(quán)重
鐵在激發(fā)態(tài)的發(fā)射光譜是唯一的,與之對應(yīng)的概率幅應(yīng)該也是唯一的。現(xiàn)在解Fe的薛定諤方程是不可能的,但解一個1*26*26的神經(jīng)網(wǎng)絡(luò)是可能的,如果把權(quán)重理解成是概率幅這個1*26*26的假想原子的概率幅就是數(shù)組w1。
| w1 | w2 |
| -289231 | 13440.09 |
| -184276 | 5746.641 |
| -150364 | -3681.14 |
| -315329 | -13240.5 |
| -308674 | -13222.6 |
| -187156 | 61710.62 |
| -232312 | 25977.4 |
| -149144 | 1457.193 |
| -331982 | -4799.87 |
| -9.96015 | 39776.41 |
| -308328 | 7400.994 |
| -316422 | 23767.48 |
| -309505 | 32589.59 |
| -89258.6 | 46552.49 |
| -99351.1 | 38326.61 |
| -162172 | 126244.2 |
| -31395.4 | 72932.22 |
| -239448 | 58161.51 |
| -325371 | -129198 |
| -389070 | -94858.2 |
| -175706 | -104918 |
| -206652 | -113942 |
| -188505 | -138800 |
| -280748 | -123848 |
| -207741 | -126320 |
| -238336 | -147196 |
| ? | 34878.72 |
| ? | 29346.68 |
| ? | -17743.7 |
| ? | 14090.25 |
| ? | -1928.21 |
| ? | 74673.72 |
| ? | 38424.44 |
| ? | 21401.24 |
| ? | 8041.499 |
| ? | 47601.46 |
| ? | -29088.4 |
| ? | -28228.9 |
| ? | 4495.003 |
| ? | 6256.264 |
| ? | 3489.706 |
| ? | 57591.33 |
| ? | 105921.2 |
| ? | 67575.13 |
| ? | -132246 |
| ? | -94526.6 |
| ? | -113108 |
| ? | -117161 |
| ? | -133005 |
| ? | -128110 |
| ? | -124757 |
| ? | -138847 |
| ? | 12553.36 |
| ? | 8697.032 |
| ? | -8757.7 |
| ? | 1114.923 |
| ? | 1649.876 |
| ? | 24914.72 |
| ? | 19867.4 |
| ? | 16915.61 |
| ? | 16274.64 |
| ? | 25312.21 |
| ? | 28995.74 |
| ? | 41878.13 |
| ? | 31661.42 |
| ? | 42582.78 |
| ? | 33261.61 |
| ? | 74445.68 |
| ? | 22340.78 |
| ? | 24146.83 |
| ? | -68853.2 |
| ? | -41682.3 |
| ? | -60919.5 |
| ? | -61177 |
| ? | -61013.6 |
| ? | -67413.6 |
| ? | -64074.2 |
| ? | -61696.8 |
| ? | 17144.49 |
| ? | 11957.47 |
| ? | -9903.28 |
| ? | -14209.4 |
| ? | -19048.3 |
| ? | 64128.1 |
| ? | 25608.63 |
| ? | -1193.35 |
| ? | -6075.69 |
| ? | 38875.13 |
| ? | -233.775 |
| ? | 24321.83 |
| ? | 24884.13 |
| ? | 40816.1 |
| ? | 30174.92 |
| ? | 131885.9 |
| ? | 85056.81 |
| ? | 67387.23 |
| ? | -163971 |
| ? | -107928 |
| ? | -142048 |
| ? | -145082 |
| ? | -155942 |
| ? | -158832 |
| ? | -153632 |
| ? | -160109 |
| ? | 7402.726 |
| ? | 5382.465 |
| ? | -7468.57 |
| ? | -9765.08 |
| ? | -3514.59 |
| ? | 58885.49 |
| ? | 26058.19 |
| ? | 4135.339 |
| ? | 8605.426 |
| ? | 36730.19 |
| ? | 31609.26 |
| ? | 59129.38 |
| ? | 50163.73 |
| ? | 69423.76 |
| ? | 52633.26 |
| ? | 149443.2 |
| ? | 57875.75 |
| ? | 52487.78 |
| ? | -144531 |
| ? | -90199.5 |
| ? | -126735 |
| ? | -127869 |
| ? | -131648 |
| ? | -140167 |
| ? | -134523 |
| ? | -133676 |
| ? | 19218.97 |
| ? | 14972.73 |
| ? | -13098.4 |
| ? | -5562.89 |
| ? | -11048 |
| ? | 30910.07 |
| ? | 24608.65 |
| ? | 20978 |
| ? | 14304.34 |
| ? | 35232.98 |
| ? | 19860.11 |
| ? | 35075.26 |
| ? | 25597.94 |
| ? | 38761.39 |
| ? | 29535.95 |
| ? | 85661.85 |
| ? | 48124.46 |
| ? | 43343.23 |
| ? | -107806 |
| ? | -68081.1 |
| ? | -95498.9 |
| ? | -95807.3 |
| ? | -97629.3 |
| ? | -105486 |
| ? | -99882.4 |
| ? | -99158.9 |
| ? | 48203.37 |
| ? | 29100.31 |
| ? | -14832.4 |
| ? | -6878.44 |
| ? | -26974.9 |
| ? | 46153.77 |
| ? | 48171.35 |
| ? | 73608.98 |
| ? | 36427.92 |
| ? | 80652.17 |
| ? | -7061.46 |
| ? | -41091 |
| ? | 17810.44 |
| ? | 17218.54 |
| ? | 21821.69 |
| ? | 25492.75 |
| ? | 118774.4 |
| ? | 81588.86 |
| ? | -108996 |
| ? | -101524 |
| ? | -82996.6 |
| ? | -96469.2 |
| ? | -139470 |
| ? | -104168 |
| ? | -110862 |
| ? | -154688 |
| ? | 17423.11 |
| ? | 35814.79 |
| ? | -6881.36 |
| ? | 7360.52 |
| ? | 18821.53 |
| ? | 7765.998 |
| ? | 83040.39 |
| ? | 76254.57 |
| ? | 69664.26 |
| ? | 101626.1 |
| ? | 97091.59 |
| ? | 86469.19 |
| ? | 95904.32 |
| ? | 98033.71 |
| ? | 102040.1 |
| ? | 65192.8 |
| ? | 45933.59 |
| ? | 157684.1 |
| ? | -115257 |
| ? | -158816 |
| ? | -92536.3 |
| ? | -114219 |
| ? | -175995 |
| ? | -125579 |
| ? | -129516 |
| ? | -208219 |
| ? | 1545.673 |
| ? | 8400.948 |
| ? | -10857.3 |
| ? | 952.6439 |
| ? | 10206.8 |
| ? | 61997.5 |
| ? | 25241.1 |
| ? | 3808.554 |
| ? | 18224.17 |
| ? | 30874.29 |
| ? | 37400.02 |
| ? | 69051.72 |
| ? | 54584.66 |
| ? | 74190.62 |
| ? | 52055.38 |
| ? | 145045.3 |
| ? | 53471.71 |
| ? | 47635.22 |
| ? | -150416 |
| ? | -81975.5 |
| ? | -140083 |
| ? | -133434 |
| ? | -117997 |
| ? | -147221 |
| ? | -133887 |
| ? | -114198 |
| ? | 4649.505 |
| ? | 4702.019 |
| ? | 4587.002 |
| ? | 5212.054 |
| ? | 8364.657 |
| ? | 9651.707 |
| ? | 22400.04 |
| ? | 26041.01 |
| ? | 30124.08 |
| ? | 30561.65 |
| ? | 30705.45 |
| ? | 30952.87 |
| ? | 31337.41 |
| ? | 31637.91 |
| ? | 33698.22 |
| ? | 35174.17 |
| ? | 44386.12 |
| ? | 226564.8 |
| ? | -228219 |
| ? | -225025 |
| ? | -227148 |
| ? | -231361 |
| ? | -233101 |
| ? | -239739 |
| ? | -227776 |
| ? | -239525 |
| ? | 52035.31 |
| ? | 32856.45 |
| ? | -19991.1 |
| ? | 18818.39 |
| ? | 814.3729 |
| ? | 101355 |
| ? | 55014.28 |
| ? | 51523.93 |
| ? | 31064.8 |
| ? | 73632.97 |
| ? | -30028.2 |
| ? | -52511.8 |
| ? | 23145.56 |
| ? | 15889.04 |
| ? | 16278.21 |
| ? | 54739.8 |
| ? | 137544.3 |
| ? | 83833.1 |
| ? | -146056 |
| ? | -111760 |
| ? | -121714 |
| ? | -129022 |
| ? | -156236 |
| ? | -140310 |
| ? | -140177 |
| ? | -166040 |
| ? | 9213.466 |
| ? | 4361.307 |
| ? | -3524.05 |
| ? | 6123.005 |
| ? | 16600.3 |
| ? | 85422.57 |
| ? | 33350.49 |
| ? | 354.9062 |
| ? | 8633.272 |
| ? | 40596.96 |
| ? | 33615.44 |
| ? | 56354.05 |
| ? | 63238.54 |
| ? | 80619.22 |
| ? | 63428.38 |
| ? | 162250.3 |
| ? | 62843.14 |
| ? | 51074.04 |
| ? | -132280 |
| ? | -89761.2 |
| ? | -110442 |
| ? | -116605 |
| ? | -132719 |
| ? | -126978 |
| ? | -127334 |
| ? | -138640 |
| ? | 7004.421 |
| ? | 9723.781 |
| ? | -11834.4 |
| ? | 4467.904 |
| ? | 12590.27 |
| ? | 64087.16 |
| ? | 28024.76 |
| ? | 6912.146 |
| ? | 20186.44 |
| ? | 33466.08 |
| ? | 42195.79 |
| ? | 73485.8 |
| ? | 58558.33 |
| ? | 78665.17 |
| ? | 56534.08 |
| ? | 149946.6 |
| ? | 51125.88 |
| ? | 46744.12 |
| ? | -148125 |
| ? | -81476.3 |
| ? | -137035 |
| ? | -131369 |
| ? | -117866 |
| ? | -144864 |
| ? | -132701 |
| ? | -114774 |
| ? | 35900.91 |
| ? | 40081.74 |
| ? | -17945.5 |
| ? | -10149.9 |
| ? | -24179.7 |
| ? | 24370.28 |
| ? | 55907.63 |
| ? | 82169.72 |
| ? | 51242.74 |
| ? | 87669.74 |
| ? | 20863.86 |
| ? | 7657.828 |
| ? | 25117.61 |
| ? | 36531.57 |
| ? | 31552.98 |
| ? | 47092.71 |
| ? | 107150.2 |
| ? | 92600 |
| ? | -148226 |
| ? | -115600 |
| ? | -127121 |
| ? | -133001 |
| ? | -155327 |
| ? | -146506 |
| ? | -141339 |
| ? | -165403 |
| ? | 12859.11 |
| ? | 37619.66 |
| ? | -18245.8 |
| ? | -10332.2 |
| ? | -12099.6 |
| ? | 15377.91 |
| ? | 48067.23 |
| ? | 62273.55 |
| ? | 42682.47 |
| ? | 63883.65 |
| ? | 43234.9 |
| ? | 54323.33 |
| ? | 30925.88 |
| ? | 50642.69 |
| ? | 41085.14 |
| ? | 65248.93 |
| ? | 45510.22 |
| ? | 52641.71 |
| ? | -96908.2 |
| ? | -76134.7 |
| ? | -77593.8 |
| ? | -88135.9 |
| ? | -109058 |
| ? | -98664.7 |
| ? | -96894 |
| ? | -117113 |
| ? | 22825.76 |
| ? | 17134.89 |
| ? | -13886.6 |
| ? | -22728.6 |
| ? | -32244.4 |
| ? | -1524.18 |
| ? | 29358.27 |
| ? | 44342.43 |
| ? | 20261.71 |
| ? | 48645.27 |
| ? | 29943.52 |
| ? | 38850.8 |
| ? | 20175.39 |
| ? | 35168.2 |
| ? | 31759.42 |
| ? | 71177.56 |
| ? | 38746.89 |
| ? | 44928.76 |
| ? | -87195.1 |
| ? | -68419.5 |
| ? | -69021.9 |
| ? | -77775.8 |
| ? | -98989.4 |
| ? | -85361.4 |
| ? | -87276.1 |
| ? | -106615 |
| ? | 41125.82 |
| ? | 51626.06 |
| ? | -33500.2 |
| ? | -24125.6 |
| ? | -43478.8 |
| ? | -10845.3 |
| ? | 44229.09 |
| ? | 84828.62 |
| ? | 51480.22 |
| ? | 74952.73 |
| ? | 52296.76 |
| ? | 62026.75 |
| ? | 20098.91 |
| ? | 33963.26 |
| ? | 47856.54 |
| ? | 25742.37 |
| ? | 76574.29 |
| ? | 119045.4 |
| ? | -123962 |
| ? | -129419 |
| ? | -101045 |
| ? | -115064 |
| ? | -155374 |
| ? | -126276 |
| ? | -129794 |
| ? | -171609 |
| ? | -85902.5 |
| ? | -25158.2 |
| ? | 76440.13 |
| ? | -52602.8 |
| ? | 29253.15 |
| ? | -4454.2 |
| ? | 19304.26 |
| ? | 75014.19 |
| ? | 86767.77 |
| ? | 112646.7 |
| ? | 145740.3 |
| ? | 78813.91 |
| ? | 140008.8 |
| ? | 187674.8 |
| ? | 148589.3 |
| ? | 95599.59 |
| ? | 150220.8 |
| ? | 140633.6 |
| ? | -117499 |
| ? | -139229 |
| ? | -97341.1 |
| ? | -105208 |
| ? | -160190 |
| ? | -111607 |
| ? | -116344 |
| ? | -186222 |
| ? | -93090.6 |
| ? | -31680.8 |
| ? | 87593.66 |
| ? | -49976.1 |
| ? | 41725.92 |
| ? | 8538.181 |
| ? | 21905.49 |
| ? | 75180.55 |
| ? | 90450.28 |
| ? | 120976.6 |
| ? | 164210.9 |
| ? | 88170.44 |
| ? | 161841.1 |
| ? | 214025.4 |
| ? | 171666.6 |
| ? | 112675.6 |
| ? | 158302.3 |
| ? | 146657.9 |
| ? | -108050 |
| ? | -144825 |
| ? | -83440.5 |
| ? | -96536.1 |
| ? | -166811 |
| ? | -101009 |
| ? | -112042 |
| ? | -198277 |
| ? | 5696.335 |
| ? | 10474.02 |
| ? | -7181.84 |
| ? | 9643.025 |
| ? | 17282.09 |
| ? | 101495.4 |
| ? | 32138.04 |
| ? | -13039.9 |
| ? | 496.1402 |
| ? | 36699.52 |
| ? | 14200.66 |
| ? | 45406.29 |
| ? | 51737.87 |
| ? | 70141.7 |
| ? | 49928.36 |
| ? | 168010.8 |
| ? | 87931.66 |
| ? | 64589.25 |
| ? | -172864 |
| ? | -108588 |
| ? | -151783 |
| ? | -152759 |
| ? | -157852 |
| ? | -167228 |
| ? | -160383 |
| ? | -160317 |
| ? | 24226.68 |
| ? | 17457.24 |
| ? | -17615.8 |
| ? | -31166.5 |
| ? | -40528.2 |
| ? | 14857.36 |
| ? | 32210.46 |
| ? | 39893.35 |
| ? | 18333.73 |
| ? | 54678.06 |
| ? | 32032.34 |
| ? | 52880.43 |
| ? | 29017.32 |
| ? | 49460.85 |
| ? | 40920.75 |
| ? | 116589.4 |
| ? | 58704.66 |
| ? | 61916.61 |
| ? | -143471 |
| ? | -98066.6 |
| ? | -121935 |
| ? | -127583 |
| ? | -141956 |
| ? | -140274 |
| ? | -136802 |
| ? | -147552 |
| ? | 15114.04 |
| ? | 8729.593 |
| ? | -6724.16 |
| ? | -22544.7 |
| ? | -25961.1 |
| ? | 32414.23 |
| ? | 27477.76 |
| ? | 21721.96 |
| ? | 5179.487 |
| ? | 45878.7 |
| ? | 15316.83 |
| ? | 26068.76 |
| ? | 26350.52 |
| ? | 40224.01 |
| ? | 35477.78 |
| ? | 101227.3 |
| ? | 60941.43 |
| ? | 54264.52 |
| ? | -108763 |
| ? | -85892.3 |
| ? | -84943.5 |
| ? | -96170.3 |
| ? | -125452 |
| ? | -104569 |
| ? | -109000 |
| ? | -135235 |
| ? | 10147.83 |
| ? | 7712.585 |
| ? | -4616.55 |
| ? | -14169.6 |
| ? | -15336.7 |
| ? | 37159.41 |
| ? | 23214.36 |
| ? | 14387.2 |
| ? | 4406.055 |
| ? | 37435.1 |
| ? | 8118.148 |
| ? | 15608.35 |
| ? | 22927.4 |
| ? | 33363.03 |
| ? | 28232.04 |
| ? | 82892.98 |
| ? | 58838.11 |
| ? | 47852.96 |
| ? | -95864 |
| ? | -73928.6 |
| ? | -76701 |
| ? | -84756.1 |
| ? | -106943 |
| ? | -92211.2 |
| ? | -94576.5 |
| ? | -114449 |
| ? | 11294.53 |
| ? | 9045.65 |
| ? | -4870.6 |
| ? | -8602.18 |
| ? | -11525.4 |
| ? | 63683.67 |
| ? | 23311.12 |
| ? | -5010.18 |
| ? | -10545.8 |
| ? | 33939.74 |
| ? | -10249.8 |
| ? | 5310.051 |
| ? | 18277.84 |
| ? | 28995.02 |
| ? | 22365.24 |
| ? | 106064.2 |
| ? | 80878.04 |
| ? | 58604.43 |
| ? | -128281 |
| ? | -93029.9 |
| ? | -105602 |
| ? | -113176 |
| ? | -135164 |
| ? | -123151 |
| ? | -124041 |
| ? | -142447 |
| ? | 11991.31 |
| ? | 14197.69 |
| ? | -11015.7 |
| ? | 6317.796 |
| ? | 4040.614 |
| ? | 52657 |
| ? | 22172.58 |
| ? | 4776.338 |
| ? | 7775.326 |
| ? | 26648.3 |
| ? | 4546.519 |
| ? | 20721.85 |
| ? | 22886.13 |
| ? | 32736.44 |
| ? | 21631.08 |
| ? | 83241.72 |
| ? | 59419.27 |
| ? | 43390.68 |
| ? | -113153 |
| ? | -67802.3 |
| ? | -102827 |
| ? | -100355 |
| ? | -96549.6 |
| ? | -110433 |
| ? | -102475 |
| ? | -96114.5 |
| ? | 12242.91 |
| ? | 7614.779 |
| ? | -4394.28 |
| ? | -3674.84 |
| ? | -2296.06 |
| ? | 55946.06 |
| ? | 26251.93 |
| ? | 8657.254 |
| ? | 5245.345 |
| ? | 37446.02 |
| ? | 13198.73 |
| ? | 23937.86 |
| ? | 34419.45 |
| ? | 46025.8 |
| ? | 37246.43 |
| ? | 103800.2 |
| ? | 62617.83 |
| ? | 48950.08 |
| ? | -106807 |
| ? | -77880.6 |
| ? | -87704 |
| ? | -94293.2 |
| ? | -113027 |
| ? | -102598 |
| ? | -103806 |
| ? | -119646 |
總結(jié)
以上是生活随笔為你收集整理的用神经网络学习Fe原子光谱并反向求导计算权重的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: GPU神经网络和JAVA神经网络速度对比
- 下一篇: 计算神经网络隐藏层节点数极小值