【Paper】2017_Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collision Avoidance
C. Wang and G. Xie, “Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collision Avoidance for Anonymous Agents in a Plane,” in IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6560-6567, Dec. 2017, doi: 10.1109/TAC.2017.2712758.
Each agent is described as a kinematic point
p˙i(t)=ui(t),i=1,2,?,N(2)\dot{p}_i(t) = u_i(t), \quad i = 1,2,\cdots,N \tag{2}p˙?i?(t)=ui?(t),i=1,2,?,N(2)
平面運動,因此 ui(t)∈R2u_i(t) \in \mathbb{R}^2ui?(t)∈R2
Controller consisting two parts
ui(t)=uip(t)fi(t),i=1,2,?,N(8)u_i(t) = u_i^p(t) f_i(t), \quad i = 1,2,\cdots,N \tag{8}ui?(t)=uip?(t)fi?(t),i=1,2,?,N(8)
Design the first part uip(t)u^p_i(t)uip?(t) in our controller as a limit-cycle oscillator
uip(t)=λ[γli(t)?11γli(t)]pˉi(t),i=1,2,?,Nu^p_i(t) = \lambda \left[\begin{matrix} \gamma l_i(t) & -1 \\ 1 & \gamma l_i(t) \end{matrix}\right]\bar{p}_i(t), \quad i = 1, 2, \cdots, Nuip?(t)=λ[γli?(t)1??1γli?(t)?]pˉ?i?(t),i=1,2,?,N
where λ>0,γ>0\lambda>0, \gamma > 0λ>0,γ>0 are constant, and
li(t)=r2?∥pˉi(t)∥2l_i(t) = r^2 - \|\bar{p}_i(t)\|^2li?(t)=r2?∥pˉ?i?(t)∥2
Angular control uiα(t)u^\alpha_i(t)uiα?(t) as
uiα(t)=di?di+di?α^i(t)u^\alpha_i(t) = \frac{d_{i^-}}{d_i + d_{i^-}} \hat{\alpha}_i(t)uiα?(t)=di?+di??di???α^i?(t)
fi(t)=c1+c22πuiα(t),i=1,2,?,Nf_i(t) = c_1 + \frac{c_2}{2\pi} u^\alpha_i(t), \quad i = 1,2,\cdots,Nfi?(t)=c1?+2πc2??uiα?(t),i=1,2,?,N
已知三邊求角度公式是余弦定理:cos?A=(b2+c2?a2)/2cb\cos A=(b^2+c^2-a^2)/2cbcosA=(b2+c2?a2)/2cb;cosB=(a平方+c平方-b平方)/2ac;cosC=(a平方+b平方-c平方)/2ab。
總結
以上是生活随笔為你收集整理的【Paper】2017_Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collision Avoidance的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【控制】二阶 UGV 的 时间-输入 指
- 下一篇: 【Matlab】解个微分方程