图像识别python cnn_MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一)...
版權聲明:本文為博主原創文章,歡迎轉載,并請注明出處。聯系方式:460356155@qq.com
全連接神經網絡是深度學習的基礎,理解它就可以掌握深度學習的核心概念:前向傳播、反向誤差傳遞、權重、學習率等。這里先用python創建模型,用minist作為數據集進行訓練。
定義3層神經網絡:輸入層節點28*28(對應minist圖片像素數)、隱藏層節點300、輸出層節點10(對應0-9個數字)。
網絡的激活函數采用sigmoid,網絡權重的初始化采用正態分布。
完整代碼如下:
1 #-*- coding:utf-8 -*-
2
3 u"""全連接神經網絡訓練學習MINIST"""
4
5 __author__ = 'zhengbiqing 460356155@qq.com'
6
7
8 importnumpy9 importscipy.special10 importscipy.misc11 from PIL importImage12 importmatplotlib.pyplot13 importpylab14 importdatetime15 from random importshuffle16
17
18 #是否訓練網絡
19 LEARN =True20
21 #是否保存網絡
22 SAVE_PARA =False23
24 #網絡節點數
25 INPUT = 784
26 HIDDEN = 300
27 OUTPUT = 10
28
29 #學習率和訓練次數
30 LR = 0.05
31 EPOCH = 10
32
33 #訓練數據集文件
34 TRAIN_FILE = 'mnist_train.csv'
35 TEST_FILE = 'mnist_test.csv'
36
37 #網絡保存文件名
38 WEIGHT_IH = "minist_fc_wih.npy"
39 WEIGHT_HO = "minist_fc_who.npy"
40
41
42 #神經網絡定義
43 classNeuralNetwork:44 def __init__(self, inport_nodes, hidden_nodes, output_nodes, learnning_rate):45 #神經網絡輸入層、隱藏層、輸出層節點數
46 self.inodes =inport_nodes47 self.hnodes =hidden_nodes48 self.onodes =output_nodes49
50 #神經網絡訓練學習率
51 self.learnning_rate =learnning_rate52
53 #用均值為0,標準方差為連接數的-0.5次方的正態分布初始化權重
54 #權重矩陣行列分別為hidden * input、 output * hidden,和ih、ho相反
55 self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))56 self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))57
58 #sigmoid函數為激活函數
59 self.active_fun = lambdax: scipy.special.expit(x)60
61 #設置神經網絡權重,在加載已訓練的權重時調用
62 defset_weight(self, wih, who):63 self.wih =wih64 self.who =who65
66 #前向傳播,根據輸入得到輸出
67 defget_outputs(self, input_list):68 #把list轉換為N * 1的矩陣,ndmin=2二維,T轉制
69 inputs = numpy.array(input_list, ndmin=2).T70
71 #隱藏層輸入 = W dot X,矩陣乘法
72 hidden_inputs =numpy.dot(self.wih, inputs)73 hidden_outputs =self.active_fun(hidden_inputs)74
75 final_inputs =numpy.dot(self.who, hidden_outputs)76 final_outputs =self.active_fun(final_inputs)77
78 returninputs, hidden_outputs, final_outputs79
80 #網絡訓練,誤差計算,誤差反向分配更新網絡權重
81 deftrain(self, input_list, target_list):82 inputs, hidden_outputs, final_outputs =self.get_outputs(input_list)83
84 targets = numpy.array(target_list, ndmin=2).T85
86 #誤差計算
87 output_errors = targets -final_outputs88 hidden_errors =numpy.dot(self.who.T, output_errors)89
90 #連接權重更新
91 self.who += numpy.dot(self.learnning_rate * output_errors * final_outputs * (1 -final_outputs), hidden_outputs.T)92 self.wih += numpy.dot(self.learnning_rate * hidden_errors * hidden_outputs * (1 -hidden_outputs), inputs.T)93
94
95 #圖像像素值變換
96 defvals2input(vals):97 #[0,255]的圖像像素值轉換為i[0.01,1],以便sigmoid函數作非線性變換
98 return (numpy.asfarray(vals) / 255.0 * 0.99) + 0.01
99
100
101 '''
102 訓練網絡103 train:是否訓練網絡,如果不訓練則直接加載已訓練得到的網絡權重104 epoch:訓練次數105 save:是否保存訓練結果,即網絡權重106 '''
107 defnet_train(train, epochs, save):108 iftrain:109 with open(TRAIN_FILE, 'r') as train_file:110 train_list =train_file.readlines()111
112 for epoch inrange(epochs):113 #打亂訓練數據
114 shuffle(train_list)115
116 for data intrain_list:117 all_vals = data.split(',')118 #圖像數據為0~255,轉換到0.01~1區間,以便激活函數更有效
119 inputs = vals2input(all_vals[1:])120
121 #標簽,正確的為0.99,其他為0.01
122 targets = numpy.zeros(OUTPUT) + 0.01
123 targets[int(all_vals[0])] = 0.99
124
125 net.train(inputs, targets)126
127 #每個epoch結束后用測試集檢查識別準確度
128 net_test(epoch)129 print('')130
131 ifsave:132 #保存連接權重
133 numpy.save(WEIGHT_IH, net.wih)134 numpy.save(WEIGHT_HO, net.who)135 else:136 #不訓練直接加載已保存的權重
137 wih =numpy.load(WEIGHT_IH)138 who =numpy.load(WEIGHT_HO)139 net.set_weight(wih, who)140
141
142 '''
143 用測試集檢查準確率144 '''
145 defnet_test(epoch):146 with open(TEST_FILE, 'r') as test_file:147 test_list =test_file.readlines()148
149 ok =0150 errlist = [0] * 10
151
152 for data intest_list:153 all_vals = data.split(',')154 inputs = vals2input(all_vals[1:])155 _, _, net_out =net.get_outputs(inputs)156
157 max =numpy.argmax(net_out)158 if max ==int(all_vals[0]):159 ok += 1
160 else:161 #識別錯誤統計,每個數字識別錯誤計數
162 #print('target:', all_vals[0], 'net_out:', max)
163 errlist[int(all_vals[0])] += 1
164
165 print('EPOCH: {epoch} score: {score}'.format(epoch=epoch, score = ok / len(test_list) * 100))166 print('error list:', errlist, 'total:', sum(errlist))167
168
169 #變換圖片的尺寸,保存變換后的圖片
170 defresize_img(filein, fileout, width, height, type):171 img =Image.open(filein)172 out =img.resize((width, height), Image.ANTIALIAS)173 out.save(fileout, type)174
175
176 #用訓練得到的網絡識別一個圖片文件
177 defimg_test(img_file):178 file_name_list = img_file.split('.')179 file_name, file_type = file_name_list[0], file_name_list[1]180 out_file = file_name + 'out' + '.' +file_type181 resize_img(img_file, out_file, 28, 28, file_type)182
183 img_array = scipy.misc.imread(out_file, flatten=True)184 img_data = 255.0 - img_array.reshape(784)185 img_data = (img_data / 255.0 * 0.99) + 0.01
186
187 _, _, net_out =net.get_outputs(img_data)188 max =numpy.argmax(net_out)189 print('pic recognized as:', max)190
191
192 #顯示數據集某個索引對應的圖片
193 defimg_show(train, index):194 file = TRAIN_FILE if train elseTEST_FILE195 with open(file, 'r') as test_file:196 test_list =test_file.readlines()197
198 all_values = test_list[index].split(',')199 print('number is:', all_values[0])200
201 image_array = numpy.asfarray(all_values[1:]).reshape((28, 28))202 matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None')203 pylab.show()204
205
206 start_time =datetime.datetime.now()207
208 net =NeuralNetwork(INPUT, HIDDEN, OUTPUT, LR)209 net_train(LEARN, EPOCH, SAVE_PARA)210
211 if notLEARN:212 net_test(0)213 else:214 print('MINIST FC Train:', INPUT, HIDDEN, OUTPUT, 'LR:', LR, 'EPOCH:', EPOCH)215 print('train spend time:', datetime.datetime.now() -start_time)216
217 #用畫圖軟件創建圖片文件,由得到的網絡進行識別
218 #img_test('t9.png')
219
220 #顯示minist中的某個圖片
221 #img_show(True, 1)
784-300-10簡單的全連接神經網絡訓練結果準確率基本在97.7%左右,運行結果如下:
EPOCH: 0 score: 95.96000000000001
error list:? [13, 21, 31, 28, 51, 61, 33, 66, 44, 56]? total:? 404
EPOCH: 1 score: 96.77
error list:? [15, 19, 27, 63, 37, 37, 21, 40, 18, 46]? total:? 323
EPOCH: 2 score: 97.25
error list:? [9, 17, 26, 26, 24, 56, 21, 41, 22, 33]? total:? 275
EPOCH: 3 score: 97.82
error list:? [9, 16, 21, 18, 20, 18, 22, 21, 31, 42]? total:? 218
EPOCH: 4 score: 97.54
error list:? [12, 23, 17, 25, 15, 34, 19, 25, 22, 54]? total:? 246
EPOCH: 5 score: 97.78999999999999
error list:? [10, 16, 20, 23, 21, 32, 18, 31, 26, 24]? total:? 221
EPOCH: 6 score: 97.6
error list:? [9, 13, 26, 34, 27, 26, 20, 28, 22, 35]? total:? 240
EPOCH: 7 score: 97.74000000000001
error list:? [12, 8, 26, 29, 27, 26, 25, 20, 27, 26]? total:? 226
EPOCH: 8 score: 97.77
error list:? [7, 10, 27, 16, 29, 28, 23, 29, 26, 28]? total:? 223
EPOCH: 9 score: 97.99
error list:? [11, 10, 32, 17, 18, 24, 14, 22, 21, 32]? total:? 201
MINIST FC Train: 784 300 10 LR: 0.05 EPOCH: 10
train spend time:? 0:05:54.137925
Process finished with exit code 0
總結
以上是生活随笔為你收集整理的图像识别python cnn_MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一)...的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 机械革命bios怎么进 机械革命进入bi
- 下一篇: 民兵是正规当兵吗?