mysql 2.71828_数学中的e=2.71828……到底是什么东西?
這里的e是一個數的代表符號,而我們要說的,便是e的故事。這倒叫人有點好奇了,要能說成一本書,這個數應該大有來頭才是,至少應該很有名吧?但是搜索枯腸,大部分人能想到的重要數字,除了眾人皆知的0及1外,大概就只有和圓有關的π了,了不起再加上虛數單位的i=√-1。這個e究竟是何方神圣呢?
在高中數學里,大家都學到過對數(logarithm)的觀念,也用過對數表。教科書里的對數表,是以10為底的,叫做常用對數(common logarithm)。課本里還簡略提到,有一種以無理數e=2.71828……為底數的對數,稱為自然對數(natural logarithm),這個e,正是我們故事的主角。不知這樣子說,是否引起你更大的疑惑呢?在十進位制系統里,用這樣奇怪的數為底,難道會比以10為底更「自然」嗎?更令人好奇的是,長得這麼奇怪的數,會有什麼故事可說呢?
這就要從古早時候說起了。至少在微積分發明之前半個世紀,就有人提到這個數,所以雖然它在微積分里常常出現,卻不是隨著微積分誕生的。那麼是在怎樣的狀況下導致它出現的呢?一個很可能的解釋是,這個數和計算利息有關。
我們都知道復利計息是怎麼回事,就是利息也可以并進本金再生利息。但是本利和的多寡,要看計息周期而定,以一年來說,可以一年只計息一次,也可以每半年計息一次,或者一季一次,一月一次,甚至一天一次;當然計息周期愈短,本利和就會愈高。有人因此而好奇,如果計息周期無限制地縮短,比如說每分鐘計息一次,甚至每秒,或者每一瞬間(理論上來說),會發生什麼狀況?本利和會無限制地加大嗎?答案是不會,它的值會穩定下來,趨近於一極限值,而e這個數就現身在該極限值當中(當然那時候還沒給這個數取名字叫e)。所以用現在的數學語言來說,e可以定義成一個極限值,但是在那時候,根本還沒有極限的觀念,因此e的值應該是觀察出來的,而不是用嚴謹的證明得到的。
包羅萬象的e
讀者恐怕已經在想,光是計算利息,應該不至於能講一整本書吧?當然不,利息只是極小的一部分。令人驚訝的是,這個與計算復利關系密切的數,居然和數學領域不同分支中的許多問題都有關聯。在討論e的源起時,除了復利計算以外,事實上還有許多其他的可能。問題雖然都不一樣,答案卻都殊途同歸地指向e這個數。比如其中一個有名的問題,就是求雙曲線y=1/x底下的面積。雙曲線和計算復利會有什麼關系,不管橫看、豎看、坐著想、躺著想,都想不出一個所以然對不對?可是這個面積算出來,卻和e有很密切的關聯。我才舉了一個例子而已,這本書里提到得更多。
如果整本書光是在講數學,還說成是說故事,就未免太不好意思了。事實上是,作者在探討數學的同時,穿插了許多有趣的相關故事。比如說你知道第一個對數表是誰發明的嗎?是納皮爾(John Napier)。沒有聽說過?這很正常,我也是讀到這本書才認識他的。重要的是要下一個問題。你知道納皮爾花了多少時間來建構整個對數表嗎?請注意這是發生在十六世紀末、十七世紀初的事情,別說電腦和計算機了,根本是什麼計算工具也沒有,所有的計算,只能利用紙筆一項一項慢慢地算,而又還不能利用對數來化乘除為加減,好簡化計算。因此納皮爾整整花了二十年的時間建立他的對數表,簡直是匪夷所思吧!試著想像一下二十年之間,每天都在重復做同類型的繁瑣計算,這種乏味的日子絕不是一般人能忍受的。但納皮爾熬過來了,而他的辛苦也得到了報償——對數受到了熱切的歡迎,許多歐洲甚至中國的科學家都迅速采用,連納皮爾也得到了來自世界各地的贊譽。最早使用對數的人當中,包括了大名鼎鼎的天文學家刻卜勒,他利用對數,簡化了行星軌道的繁復計算。
在《毛起來說e》中,還有許多我們在一般數學課本里讀不到的有趣事實。比如第一本微積分教科書是誰寫的呢?(假如你曾受微積分課程之苦,也會想知道誰是「始作俑者」吧?」)是羅必達先生。對啦,就是羅必達法則(L'Hospital's Rule)的那位羅必達。但是羅必達法則反倒是約翰.伯努利先發現的。不過這無關乎剽竊的問題,他們之間是有協議的。
說到伯努利可就有故事說了,這個家族實在不得了,別的家族出一位天才就可以偷笑了,而他們家族的天才是用「量產」形容。伯努利們前前后后在數學領域中活躍了一百年,他們的諸多成就(不僅止於數學領域),就算隨便列一列,也有一本書這麼厚。不過這個家族另外擅長的一件事就不太敢恭維了,那就是吵架。自家人吵不夠,也跟外面的人吵(可說是「表里如一」)。連爸爸與兒子合得一個大獎,爸爸還非常不滿意,覺得應該由自己獨得,居然氣得把兒子趕出家門;和現代的許多「孝子」們比起來,這位爸爸真該感到慚愧。
e的「影響力」其實還不限於數學領域。大自然中太陽花的種子排列、鸚鵡螺殼上的花紋都呈現螺線的形狀,而螺線的方程式,是要用e來定義的。建構音階也要用到e,而如果把一條鏈子兩端固定,松松垂下,它呈現的形狀若用數學式子表示的話,也需要用到e。這些與計算利率或者雙曲線面積八竿子打不著的問題,居然統統和e有關,豈不奇妙?
數學其實沒那麼難!
我們每個人的成長過程中都讀過不少數學,但是在很多人心目中,數學似乎是門無趣甚至可怕的科目。尤其到了大學的微積分,到處都是定義、定理、公式,令人望之生畏。我們會害怕一個學科的原因之一,是有距離感,那些微積分里的東西,好像不知是從哪兒冒出來的,對它毫無感覺,也覺得和我毫無關系。如果我們知道微積分是怎麼演變、由誰發明的,而發明之時還發生了些什麼事(微積分是誰發明的這件事,爭論了許多年,對數學發展產生重大的影響),
收起
作業幫用戶
2017-11-09
舉報
總結
以上是生活随笔為你收集整理的mysql 2.71828_数学中的e=2.71828……到底是什么东西?的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: java的xms与xmx和服务器内存_J
- 下一篇: mysql 二维表 查询_二维报表数据表